Skip to main content
Log in

Promiscuous Trans-splicing Activities Revealed by Next Generation Sequencing-based Analysis of 298 Split Inteins

  • Research Paper
  • Protein Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Protein trans-splicing is a naturally occurring process in which two protein fragments are ligated by a reaction between two intein domains, called split inteins. Despite their usefulness in research, the reactivity and structure of only a few split inteins have been studied. We used cell-based kanamycin selection and next-generation sequencing (NGS) to simultaneously measure the splicing reactivity of 298 N-intein–C-intein combinations derived from the DnaE gene of cyanobacteria. Additionally, we confirmed the splicing activities by measuring the growth of cells individually harboring each split intein under kanamycin selection. Overall, the N-intein–C-intein combinations were promiscuous in their trans-splicing activities, although certain combinations did not splice actively. These results and the NGS-based analysis in this research would be helpful for the development of novel split inteins and further understanding of the trans-splicing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah, N. H. and T. W. Muir (2014) Inteins: nature’s gift to protein chemists. Chem. Sci. 5: 446–461.

    Article  CAS  Google Scholar 

  2. Noren, C. J. J. Wang, and F. B. Perler (2000) Dissecting the chemistry of protein splicing and its applications. Angew. Chem. Int. Ed. Engl. 39: 450–466.

    Article  CAS  Google Scholar 

  3. Saleh, L. and F. B. Perler (2006) Protein splicing in cis and in trans. Chem. Rec. 6: 183–193.

    Article  CAS  Google Scholar 

  4. Lopez-Igual, R., J. Bernal-Bayard, A. Rodriguez-Paton, J. M. Ghigo, and D. Mazel (2019) Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat. Biotechnol. 37: 755–760.

    Article  CAS  Google Scholar 

  5. Shah, N. H., M. Vila-Perelló, and T. W. Muir (2011) Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew. Chem. Int. Ed. Engl. 50: 6511–6515.

    Article  CAS  Google Scholar 

  6. Lienert, F., J. P. Torella, J. H. Chen, M. Norsworthy, R. R. Richardson, and P. A. Silver (2013) Two- and three-input TALEbased AND logic computation in embryonic stem cells. Nucleic Acids Res. 41: 9967–9975.

    Article  CAS  Google Scholar 

  7. Shah, N. H. E. Eryilmaz, D. Cowburn, and T. W. Muir (2013) Naturally split inteins assemble through a “capture and collapse” mechanism. J. Am. Chem. Soc. 135: 18673–18681.

    Article  CAS  Google Scholar 

  8. Ramirez, M., N. Valdes, D. Guan, and Z. Chen (2013) Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng. Des. Sel. 26: 215–223.

    Article  CAS  Google Scholar 

  9. Aranko, A. S. A. Wlodawer, and H. Iwai (2014) Nature’s recipe for splitting inteins. Protein Eng. Des. Sel. 27: 263–271.

    Article  CAS  Google Scholar 

  10. Busche, A. E. A. S. Aranko, M. Talebzadeh-Farooji, F. Bernhard, V. Dotsch, and H. Iwai (2009) Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew. Chem. Int. Ed. Engl. 48: 6128–6131.

    Article  CAS  Google Scholar 

  11. Appleby-Tagoe, J. H. I. V. Thiel, Y. Wang, Y. Wang, H. D. Mootz, and X. Q. Liu (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J. Biol. Chem. 286: 34440–34447.

    Article  CAS  Google Scholar 

  12. Stevens, A. J. Z. Z. Brown, N. H. Shah, G. Sekar, D. Cowburn, and T. W. Muir (2016) Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138: 2162–2165.

    Article  CAS  Google Scholar 

  13. Iwai, H., S. Zuger, J. Jin, and P. H. Tam (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. 580: 1853–1858.

    Article  CAS  Google Scholar 

  14. Dassa, B., G. Amitai, J. Caspi, O. Schueler-Furman, and S. Pietrokovski (2007) Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. 46: 322–330.

    Article  CAS  Google Scholar 

  15. Cheriyan, M., S. H. Chan, and F. Perler (2014) Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine. J. Mol. Biol. 426: 4018–4029.

    Article  CAS  Google Scholar 

  16. Cheriyan, M., C. S. Pedamallu, K. Tori, and F. Perler (2013) Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J. Biol. Chem. 288: 6202–6211.

    Article  CAS  Google Scholar 

  17. Lockless, S. W. and T. W. Muir (2009) Traceless protein splicing utilizing evolved split inteins. Proc. Natl. Acad. Sci. USA. 106: 10999–11004.

    Article  CAS  Google Scholar 

  18. Picelli, S., A. K. Bjorklund, B. Reinius, S. Sagasser, G. Winberg, and R. Sandberg (2014) Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24: 2033–2040.

    Article  CAS  Google Scholar 

  19. Hwang, B., S. Heo, N. Cho, H. Seo, and D. Bang (2019) Facilitated large-scale sequence validation platform using Tn5-tagmented cell lysates. ACS Synth. Biol. 8: 596–600.

    Article  CAS  Google Scholar 

  20. Bolger, A. M. M. Lohse, and B. Usadel (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30: 2114–2120.

    Article  CAS  Google Scholar 

  21. Li, H. and R. Durbin (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25: 1754–1760.

    Article  CAS  Google Scholar 

  22. Perler, F. B. (2002) InBase: the intein database. Nucleic Acids Res. 30: 383–384.

    Article  CAS  Google Scholar 

  23. Hasenbrink, G., S. Schwarzer, L. Kolacna, J. Ludwig, H. Sychrova, and H. Lichtenberg-Frate (2005) Analysis of the mKir2.1 channel activity in potassium influx defective Saccharomyces cerevisiae strains determined as changes in growth characteristics. FEBS Lett. 579: 1723–1731.

    Article  CAS  Google Scholar 

  24. Shah, N. H. G. P. Dann, M. Vila-Perello, Z. Liu, and T. W. Muir (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134: 11338–11341.

    Article  CAS  Google Scholar 

  25. Wang, B., B. J. DeKosky, M. R. Timm, J. Lee, E. Normandin, J. Misasi, R. Kong, J. R. McDaniel, G. Delidakis, K. E. Leigh, T. Niezold, C. W. Choi, E. G. Viox, A. Fahad, A. Cagigi, A. Ploquin, K. Leung, E. S. Yang, W. P. Kong, W. N. Voss, A. G. Schmidt, M. A. Moody, D. R. Ambrozak, A. R. Henry, F. Laboune, J. E. Ledgerwood, B. S. Graham, M. Connors, D. C. Douek, N. J. Sullivan, A. D. Ellington, J. R. Mascola, and G. Georgiou (2018) Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nat. Biotechnol. 36: 152–155.

    Article  Google Scholar 

  26. Hu, J. H. S. M. Miller, M. H. Geurts, W. Tang, L. Chen, N. Sun, C. M. Zeina, X. Gao, H. A. Rees, Z. Lin, and D. R. Liu (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 556: 57–63.

    Article  CAS  Google Scholar 

  27. Choi, G. C. G. P. Zhou, C. T. L. Yuen, B. K. C. Chan, F. Xu, S. Bao, H. Y. Chu, D. Thean, K. Tan, K. H. Wong, Z. Zheng, and A. S. L. Wong (2019) Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nat. Methods. 16: 722–730.

    Article  CAS  Google Scholar 

  28. Villiger, L., H. M. Grisch-Chan, H. Lindsay, F. Ringnalda, C. B. Pogliano, G. Allegri, R. Fingerhut, J. Häberle, J. Matos, M. D. Robinson, B. Thöny, and G. Schwank (2018) Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24: 1519–1525.

    Article  CAS  Google Scholar 

  29. Schaerli, Y., M. Gili, and M. Isalan (2014) A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res. 42: 12322–12328.

    Article  CAS  Google Scholar 

  30. Wang, T., A. H. Badran, T. P. Huang, and D. R. Liu (2018) Continuous directed evolution of proteins with improved soluble expression. Nat. Chem. Biol. 14: 972–980.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Bang Lab for their critical comments during this work. This work was supported by: (i) the Mid-career Researcher Program (NRF-2018R1A2A 1A05079172) from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Planning; (ii) the Bio & Medical Technology Development Program of the NRF, funded by the Korean government (MSIT; NRF-2016M3A9B6948494); (iii) the Bio & Medical Technology Development Program of the NRF, funded by the Korean government (MSIT; NRF-2018M3A9H3024850) and (iV) the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI18C2282).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duhee Bang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

12257_2019_394_MOESM1_ESM.pdf

Aptamer-based Fluorescent Assay for Simple and Sensitive Detection of Fipronil in Liquid EggsPromiscuous Trans-splicing Activities Revealed by Next Generation Sequencing-based Analysis of 298 Split Inteins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H.N., Bang, D. Promiscuous Trans-splicing Activities Revealed by Next Generation Sequencing-based Analysis of 298 Split Inteins. Biotechnol Bioproc E 25, 293–301 (2020). https://doi.org/10.1007/s12257-019-0394-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0394-x

Keywords

Navigation