Skip to main content
Log in

Regioselective Biotransformation of Phloretin Using Streptomyces avermitilis MA4680

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Streptomyces avermitilis MA4680 was used for the biotransformation of phloretin, one of the dihydrochalcone found in apple bark. After LC analysis, two main biotransformed products were identified and they were further analyzed using GC/MS. After BSTFA derivatization of biotransformed product, they were interpreted as regioselectively hydroxylated products of phloretin in Bring. Maximum conversion of phloretin was 6.7% with 1 h of reaction, and the phloretin and reaction products were completely metabolized after 3 h of reaction due to cellular metabolism. Addition of 0.5 mM quinidine completely blocked hydroxylation of phloretin, which means the hydroxylation proceed by P450 monoxygenase dependent metabolism. Addition of Brij 35 detergent resulted in 150% increase of hydroxylated product due to facilitating transport of phloretin and its reaction product across cellular membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slimestad, R., T. Fossen, and M. J. Verheul (2008) The flavonoids of tomatoes. J. Agric. Food Chem. 56: 2436–2441.

    Article  CAS  Google Scholar 

  2. Sanchez-Gonzalez, M. and J. P. Rosazza (2004) Microbial transformations of chalcones: hydroxylation, O-demethylation, and cyclization to flavanones. J. Nat. Prod. 67: 553–558.

    Article  CAS  Google Scholar 

  3. Miyazawa, M., H. Ando, Y. Okuno, and H. Araki (2004) Biotransformation of isoflavones by Aspergillus niger, as biocatalyst. J. Mol. Catal. B Enzym. 27: 91–95.

    Article  CAS  Google Scholar 

  4. Seeger, M., M. Gonzalez, B. Camara, L. Munoz, E. Ponce, L. Mejias, C. Mascayano, Y. Vasquez, and S. Sepulveda-Boza (2003) Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl. Environ. Microbiol. 69: 5045–5050.

    Article  CAS  Google Scholar 

  5. Gechev, T. S., J. Hille, H. J. Woerdenbag, M. Benina, N. Mehterov, V. Toneva, A. R. Fernie, and B. Mueller-Roeber (2014) Natural products from resurrection plants: Potential for medical applications. Biotechnol. Adv. 32: 1091–1101.

    Article  CAS  Google Scholar 

  6. Cao, H., X. Chen, A. R. Jassbi, and J. Xiao (2015) Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv. 33: 214–223.

    Article  CAS  Google Scholar 

  7. Pandey, B. P., C. Roh, K. Y. Choi, N. Lee, E. J. Kim, S. Ko, T. Kim, H. Yun, and B. G. Kim (2010) Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnol. Bioeng. 105: 697–704.

    CAS  PubMed  Google Scholar 

  8. Abari, A. H. and M. Tayebi (2019) Bioconversion of genistein to orobol by Bacillus subtilis spore displayed tyrosinase and monitoring the anticancer effects of orobol on MCF-7 breast cancer cells. Biotechnol. Bioprocess Eng. 24: 507–512.

    Article  CAS  Google Scholar 

  9. Das, S. and J. P. Rosazza (2006) Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499–508.

    Article  CAS  Google Scholar 

  10. Walton, M. C., T. K. McGhie, G. W. Reynolds, and W. H. Hendriks (2006) The flavonol quercetin-3-glucoside inhibits cyanidin-3-glucoside absorption in vitro. J. Agric. Food Chem. 54: 4913–4920.

    Article  CAS  Google Scholar 

  11. Rüfer, C. E. and S. E. Kulling (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agric. Food Chem. 54: 2926–2931.

    Article  Google Scholar 

  12. Lee, C. K. (2006) Effects of phloretin, cytochalasin B, and Dfructose on 2-deoxy-D-glucose transport of the glucose transport system present in Spodoptera frugiperda clone 21-AE cells. J. Exp. Biomed. Sci. 12: 17–22.

    Google Scholar 

  13. Petersen, C. (1835) Analyse des phloridzins. European J Org Chem. 15: 178.

    Google Scholar 

  14. Eichenberger, M., B. J. Lehka, C. Folly, D. Fischer, S. Martens, E. Simón, and M. Naesby (2017) Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab. Eng. 39: 80–89.

    Article  CAS  Google Scholar 

  15. Jeon, J. M., T. R. Choi, B. R. Lee, J. H. Seo, H. S. Song, H. R. Jung, S. Y. Yang, J. Y. Park, E. J. Kim, B. G. Kim, and Y. H. Yang (2019) Decreased growth and antibiotic production in Streptomyces coelicolor A3 (2) by deletion of a highly conserved DeoR family regulator, SCO1463. Biotechnol. Bioprocess Eng. 24: 613–621.

    Article  CAS  Google Scholar 

  16. Chang, T. S. (2014) Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int J Mol Sci. 15: 5699–5716.

    Article  CAS  Google Scholar 

  17. Ettal, N., A. Handy, A. Ali, and M. Amin (2011) Nystatin production by a local Streptmyces sp. isolated from the Egyptian soil. J. Pharm. Biomed. Sci. 1: 128–136.

    Google Scholar 

  18. Roh, C., S. H. Seo, K. Y. Choi, M. Cha, B. P. Pandey, J. H. Kim, J. S. Park, D. H. Kim, I. S. Chang, and B. G. Kim (2009) Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680. J Biosci Bioeng. 108: 41–46.

    Article  CAS  Google Scholar 

  19. Mitsukura, K., Y. Kondo, T. Yoshida, and T. Nagasawa (2006) Regioselective hydroxylation of adamantane by Streptomyces griseoplanus cells. Appl. Microbiol. Biotechnol. 71: 502–504.

    Article  CAS  Google Scholar 

  20. Guengerich, F. P., G. P. Miller, I. H. Hanna, H. Sato, and M. V. Martin (2002) Oxidation of methoxyphenethylamines by cytochrome P450 2D6. Analysis of rate-limiting steps. J. Biol. Chem. 277: 33711–33719.

    Article  CAS  Google Scholar 

  21. Foroozesh, M., J. Sridhar, N. Goyal, and J. Liu (2019) Coumarins and P450s, studies reported to-date. Molecules. 24: 1620.

    Article  CAS  Google Scholar 

  22. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526–531.

    Article  Google Scholar 

  23. Kim, J. and W. Schumann (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol Life Sci. 66: 3127–3136.

    Article  CAS  Google Scholar 

  24. Pandey, R. P., T. F. Li, E. H. Kim, T. Yamaguchi, Y. I. Park, J. S. Kim, and J. K. Sohng (2013) Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 79: 3516–3521.

    Article  CAS  Google Scholar 

  25. Overwin, H., V. Wray, and B. Hofer (2015) Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides. J. Biotechnol. 211: 103–106.

    Article  CAS  Google Scholar 

  26. Yahyaa, M., R. Davidovich-Rikanati, Y. Eyal, A. Sheachter, S. Marzouk, E. Lewinsohn, and M. Ibdah (2016) Identification and characterization of UDP-glucose: phloretin 4'-O-glycosyltransferase from Malus x domestica Borkh. Phytochemistry. 130: 47–55.

    Article  CAS  Google Scholar 

  27. Ito, T., S. Fujimoto, M. Shimosaka, and G. Taguchi (2014) Production of C-glucosides of flavonoids and related compounds by Escherichia coli expressing buckwheat C-glucosyltransferase. Plant Biotechnol. 31: 519–524.

    Article  CAS  Google Scholar 

  28. Brazier-Hicks, M., K. M. Evans, M. C. Gershater, H. Puschmann, P. G. Steel, and R. Edwards (2009) The C-glycosylation of flavonoids in cereals. J. Biol. Chem. 284: 17926–17934.

    Article  CAS  Google Scholar 

  29. Gosch, C., H. Halbwirth, B. Schneider, D. Hölscher, and K. Stich (2010) Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2'-O-glucoside (phloridzin). Plant Sci. 178: 299–306.

    Article  CAS  Google Scholar 

  30. Jugdé, H., D. Nguy, I. Moller, J. M. Cooney, and R. G. Atkinson (2008) Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J. 275: 3804–3814.

    Article  Google Scholar 

  31. Hutabarat, O. S., H. Flachowsky, I. Regos, S. Miosic, C. Kaufmann, S. Faramarzi, M. Z. Alam, C. Gosch, A. Peil, K. Richter, M. V. Hanke, D. Treutter, K. Stich, and H. Halbwirth (2016) Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta. 243: 1213–1224.

    Article  CAS  Google Scholar 

  32. Werner, S. R. and J. A. Morgan (2009) Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. J. Biotechnol. 142: 233–241.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (NRF-2017R1D1A1B0503572614) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junehyung Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Lee, Jk., Choi, KY. et al. Regioselective Biotransformation of Phloretin Using Streptomyces avermitilis MA4680. Biotechnol Bioproc E 25, 272–278 (2020). https://doi.org/10.1007/s12257-019-0441-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0441-7

Keywords

Navigation