Skip to main content
Log in

Facile Identification and Isolation of Protease Using SDS-PAGE and Zymography

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Purification and identification of novel proteases is critical in the development of new therapeutic drugs, such as those for ischemic stroke. However, it's a time-consuming and expensive job to purify enzymes from natural sources. Furthermore, even if the process is completed, the enzyme could be a known protease. Zymography is a protease-confirming assay, but its molecular weight is hard to be accurately measured due to background noise and the broad zone of lysis. Moreover, a sample in a zymography gel cannot be used for protein identification because of the staining substrate in the gel. However, a protease in an unstained SDS-PAGE gel is not damaged by staining buffer and its proteolytic potential will be maintained and be identified, even though these bands are invisible. In this research, to take advantage of both zymography and unstained SDS-PAGE, each band in an unstained SDS-PAGE gel was cut and transferred to a zymography gel. Through this method, bands on the SDS-PAGE gel and the accompanying electroblotted membrane could be used to confirm the target proteolytic activity. Screened samples could be used for protease identification and to check for novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins. Nature. 426: 895–899.

    Article  CAS  Google Scholar 

  2. Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature. 407: 258–264.

    Article  CAS  Google Scholar 

  3. Kini, R. M. (2005) Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol Haemost Thromb. 34: 200–204.

    Article  CAS  Google Scholar 

  4. Gräslund, S., P. Nordlund, J. Weigelt, B. M. Hallberg, J. Bray, O. Gileadi, S. Knapp, U. Oppermann, C. Arrowsmith, R. Hui, J. Ming, S. dhe-Paganon, H. W. Park, A. Savchenko, A. Yee, A. Edwards, R. Vincentelli, C. Cambillau, R. Kim, S. H. Kim, Z. Rao, Y. Shi, T. C. Terwilliger, C. Y. Kim, L. W. Hung, G. S. Waldo, Y. Peleg, S. Albeck, T. Unger, O. Dym, J. Prilusky, J. L. Sussman, R. C. Stevens, S. A. Lesley, I. A. Wilson, A. Joachimiak, F. Collart, I. Dementieva, M. I. Donnelly, W. H. Eschenfeldt, Y. Kim, L. Stols, R. Wu, M. Zhou, S. K. Burley, J. S. Emtage, J. M. Sauder, D. Thompson, K. Bain, J. Luz, T. Gheyi, F. Zhang, S. Atwell, S. C. Almo, J. B. Bonanno, A. Fiser, S. Swaminathan, F. W. Studier, M. R. Chance, A. Sali, T. B. Acton, R. Xiao, L. Zhao, L. C. Ma, J. F. Hunt, L. Tong, K. Cunningham, M. Inouye, S. Anderson, H. Janjua, R. Shastry, C. K. Ho, D. Wang, H. Wang, M. Jiang, G. T. Montelione, D. I. Stuart, R. J. Owens, S. Daenke, A. Schütz, U. Heinemann, S. Yokoyama, K. Büssow, and K. C. Gunsalus (2008) Protein production and purification. Nat Methods. 5: 135–146.

    Article  Google Scholar 

  5. Ghosh, R. and Z. F. Cui (2000) Protein purification by ultrafiltration with pre-treated membrane. J. Memb. Sci. 167: 47–53.

    Article  CAS  Google Scholar 

  6. Gessesse, A., R. Hatti-Kaul, B. A. Gashe, and B. O. Mattiasson (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb. Technol. 32: 519–524.

    Article  CAS  Google Scholar 

  7. Choi, N. S., D. M. Chung, C. S. Park, K. H. Ahn, J. S. Kim, J. J. Song, S. H. Kim, B. D. Yoon, and M. S. Kim (2010) Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnol. Bioprocess Eng. 15: 446–452.

    Article  CAS  Google Scholar 

  8. Gogly, B., N. Groult, W. Hornebeck, G. Godeau, and B. Pellat (1998) Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase. Anal. Biochem. 255: 211–216.

    Article  CAS  Google Scholar 

  9. Yeon, S. J., G. Y. Chung, J. S. Hong, J. H. Hwang, and H. S. Shin (2017) Purification of serine protease from polychaeta, Lumbrineris nipponica, and assessment of its fibrinolytic activity. In Vitro Cell Dev Biol Anim. 53: 494–501.

    Article  CAS  Google Scholar 

  10. Abe, H., W. Sato-Okoshi, M. Tanaka, K. Okoshi, W. Teramoto, T. Kondoh, G. Nishitani, and Y. Endo (2014) Swimming behavior of the spoon worm Urechis unicinctus (Annelida, Echiura). Zoology. 117: 216–223.

    Article  Google Scholar 

  11. Bi, Q., J. Chu, Y. Feng, Z. Jiang, B. Han, and W. Liu (2013) Purification and characterization of a new serine protease with fibrinolytic activity from the marine invertebrate, Urechis unicinctus. Appl. Biochem. Biotechnol. 170: 525–540.

    Article  CAS  Google Scholar 

  12. Wang, D., W. Liu, B. Han, and R. Xu (2007) Biochemical and enzymatic properties of a novel marine fibrinolytic enzyme from Urechis unicinctus. Appl. Biochem. Biotechnol. 136: 251–264.

    Article  CAS  Google Scholar 

  13. Chu, J., W. Cai, B. Han, and W. Liu (2010) Thrombolytic effect, hemolytic toxicity and acute toxicity of the fibrinolytic enzyme UFEI from urechis unicinctus. Yao Wu Sheng Wu Ji Shu. 17: 331–333.

    CAS  Google Scholar 

  14. Astrup, T. and S. Müllertz (1952) The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346–351.

    Article  CAS  Google Scholar 

  15. Choi, N. S. and S. H. Kim (2000) Two fibrin zymography methods for analysis of plasminogen activators on gels. Anal. Biochem. 281: 236–238.

    Article  CAS  Google Scholar 

  16. Yao, Z., J. A. Kim, and J. H. Kim (2018) Gene cloning, expression, and properties of a fibrinolytic enzyme secreted by Bacillus pumilus BS15 isolated from Gul (Oyster) Jeotgal. Biotechnol. Bioprocess Eng. 23: 293–301.

    Article  CAS  Google Scholar 

  17. Schägger, H. (2006) Tricine–SDS-PAGE. Nat Protoc. 1: 16–22.

    Article  Google Scholar 

  18. Krizkova, S., O. Zitka, V. Adam, R. Kizek, M. Masarik, M. Stiborova, T. Eckschlager, and G. J. Chavis (2011) Assays for determination of matrix metalloproteinases and their activity. Trends Analyt Chem. 30: 1819–1832.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by INHA UNIVERSITY RESEARCH GRANT.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Sung Shin.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y.J., Park, J.H., Chung, G.Y. et al. Facile Identification and Isolation of Protease Using SDS-PAGE and Zymography. Biotechnol Bioproc E 25, 164–169 (2020). https://doi.org/10.1007/s12257-019-0396-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0396-8

Keywords

Navigation