Skip to main content
Log in

On the Positivity of Kirillov’s Character Formula

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give a direct proof for the positivity of Kirillov’s character on the convolution algebra of smooth, compactly supported functions on a connected, simply connected nilpotent Lie group G. Then we use this positivity result to construct a representation of G × G and establish a G × G-equivariant isometric isomorphism between our representation and the Hilbert–Schmidt operators on the underlying representation of G. In fact, we provide a framework in which we establish the positivity of Kirillov’s character for coadjoint orbits of groups such as \(\text {SL}(2, \mathbb {R})\) under additional hypotheses that are automatically satisfied in the nilpotent case. These hypotheses include the existence of a real polarization and the Pukanzsky condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiyah, M.F.: The Harish-Chandra character. In: Representation Theory of Lie Groups, London Mathematical Society Lecture Note Series, pp 176–182. Cambridge University Press, Cambridge (1980)

  2. Atiyah, M. F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)

    Article  MathSciNet  Google Scholar 

  3. Berline, N., Vergne, M.: Fourier transforms of orbits of the coadjoint representation. In: Representation theory of reductive groups (Park City, Utah, 1982), vol. 40 of Progr. Math., pp 53–67. Birkhäuser Boston, Boston (1983)

  4. Corwin, L.J., Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Part I, volume 18 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, Basic theory and examples (1990)

  5. Dixmier, J.: C*-Algebras. North-Holland, Amsterdam (1977)

  6. Duistermaat, J. J., Heckman, G. J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69(2), 259–268 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

  8. Harish-Chandra: The characters of semisimple Lie groups. Trans. Amer. Math. Soc. 83, 98–163 (1956)

    Article  MathSciNet  Google Scholar 

  9. Higson, N.: Some noncommutative geometry problems arising from the orbit method. Special Session on Noncommutative Geometry and Geometric Analysis, Spring Western Sectional Meeting University of Colorado Boulder, Boulder (2013)

  10. Khanmohammadi, E.: Quantization of Coadjoint Orbits via Positivity of Kirillov’s Character Formula. PhD thesis, The Pennsylvania State University (2015)

  11. Kirillov, A.A: Unitary representations of nilpotent Lie groups. Uspehi. Mat. Nauk. 17((4 (106))), 57–110 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Kirillov, A.A: The characters of unitary representations of Lie groups. Funct. Anal. Appl. 2, 133–146 (1968)

    Article  MathSciNet  Google Scholar 

  13. Kirillov, A.A.: Merits demerits of the orbit method. Bull. Amer. Math Soc. (N.S.) 36(4), 433–488 (1999)

    Article  MathSciNet  Google Scholar 

  14. Kleppner, Adam, Lipsman, Ronald L.: The Plancherel formula for group extensions. i, II. Ann. Sci. École. Norm. Sup. (4), 5:459–516; ibid. (4) 6(1973) 103–132 (1972)

  15. Kostant, B.: Quantization and unitary representations. I. Prequantization. In: Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, pp 87–208. Springer, Berlin (1970)

  16. Lipsman, R.L.: A direct proof of the Kirillov character formula for nilpotent groups. Duke. Math. J. 42, 225–229 (1975)

    Article  MathSciNet  Google Scholar 

  17. Pukánszky, L.: On the characters and the Plancherel formula of nilpotent groups. J. Functional Anal. 1, 255–280 (1967)

    Article  MathSciNet  Google Scholar 

  18. Reiter, H., Stegeman, J.D. Classical harmonic analysis and locally compact groups: ., 2nd ed., p xiii + 327. Clarendon Press, Oxford (2000)

  19. Rossmann, W.: Kirillov’s character formula for reductive Lie groups. Invent. Math. 48(3), 207–220 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. Schiffmann, G.: Distributions centrales de type positif sur un groupe de Lie nilpotent. Bull. Soc. Math. France 96, 347–355 (1968)

    Article  MathSciNet  Google Scholar 

  21. Souriau, J.-M.: Structure Des Systèmes Dynamiques. Ma Trises De mathématiques. Dunod, Paris (1970)

  22. Vergne, M.: On Rossmann’s character formula for discrete series. Invent. Math. 54, 11–14 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Nigel Higson for posing the central question in this project and also for numerous conversations about it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehssan Khanmohammadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, E. On the Positivity of Kirillov’s Character Formula. Math Phys Anal Geom 23, 13 (2020). https://doi.org/10.1007/s11040-020-09337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-020-09337-3

Keywords

Mathematics Subject Classification (2010)

Navigation