Skip to main content
Log in

Magnetic Property of Mn-Doped Monoclinic ZrO2 Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Recently, many theoretical studies have projected that the Mn-doped ZrO2 compounds can exhibit long-range ferromagnetism. This study is to understand the magnetic property of Mn-doped monoclinic zirconia, Zr1−xMnxO2 (x = 0, 0.05, 0.10, 0.15, and 0.20), prepared at equilibrium condition, using solid-state reaction route. The structural property of these samples was studied using X-ray diffraction, and it is observed that all Mn-doped compounds are crystallized into monoclinic symmetry. The magnetic property measurements show that the pure ZrO2 compound exhibit paramagnetic behavior. However, all Mn-doped compounds exhibit ferrimagnetic ordering with a magnetic irreversibility behavior. The magnetic irreversibility in these compounds can be explained in terms of competition between ferrimagnetic and anti-ferromagnetic interactions. The coercivity and the area under hysteresis loop of all Mn-doped compounds are found to increase with the increase of Mn doping. The influence of final sintering temperature on the magnetic property is also studied, and it indicates that the samples prepared at a lower sintering temperature (1200 °C) exhibits better squareness of M-H loop, but with a decreased magnetic moment in comparison to the samples prepared at 1550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Science. 291, 854 (2001)

    Article  ADS  Google Scholar 

  2. Kim, J.-Y., Park, J.-H., Park, B.-G., Noh, H.-J., Oh, S.-J., Yang, J.S., Kim, D.-H., Bu, S.D., Noh, T.-W., Lin, H.-J., Hsieh, H.-H., Chen, C.T.: Phys. Rev. Lett. 90, 017401 (2003)

    Article  ADS  Google Scholar 

  3. Wang, Z., Wang, W., Tang, J., Tung, L.D., Spinu, L., Zhou, W.: Appl. Phys. Lett. 83, 518 (2003)

    Article  ADS  Google Scholar 

  4. Jung, S.W., An, S.-J., Yi, G., Jung, C.U., Lee, S., Cho Appl, S.: Phys. Lett. 80, 4561 (2002)

    Google Scholar 

  5. Ogale, S.B., et al.: Phys. Rev. Lett. 91, 077205 (2003)

    Article  ADS  Google Scholar 

  6. Srivastava, S.K., Lejay, P., Barbara, B., Pailhès, S., Madigou, V., Bouzerar, G.: Phys. Rev. 82, 193203 (2010)

    Article  ADS  Google Scholar 

  7. Srivastava, S.K., Lejay, P., Barbara, B., Boisron, O., Pailhes, S., Bouzerar, G.: J. Phys. Condens. Matter. 23, 442202 (2011)

    Article  Google Scholar 

  8. Srivastava, S.K., Lejay, P., Hadj-Azzem, A., Bouzerar, G.: J. Supercond. Nov. Magn. 27, 487 (2014)

    Article  Google Scholar 

  9. Srivastava, S.K., Brahma, R., Datta, S., Guha, S., Aakansha, S.S.B., Narzary, B., Basumatary, D.R., Kar, M., Ravi, S.: Mater. Res. Express. 6(126107), (2019)

  10. Lee, D.S., Kim, W.S., Choi, S.H., Kim, J., Lee, H.W., Lee, J.H.: Solid State Ionics. 176, 33 (2005)

    Article  Google Scholar 

  11. Dewhurst, J.K., Lowther, J.E.: Phys. Rev. B. 57, 741 (1998)

    Article  ADS  Google Scholar 

  12. Bacquet, G., Dugas, J., Escribe, C., Rouanet, A.: J. Solid State Chem. 19, 251 (1976)

    Article  ADS  Google Scholar 

  13. Appel, C.C., Bonanos, N., Horsewell, A., Linderoth, S.: J. Mater. Sci. 36, 4493 (2001)

    Article  ADS  Google Scholar 

  14. Ostanin, S., Ernst, A., Sandratskii, L.M., Bruno, P., Däne, M., Hughes, I.D., Staunton, J.B., Hergert, W., Mertig, I., Kudrnovský, J.: Phys. Rev. Lett. 98, 016101 (2007)

    Article  ADS  Google Scholar 

  15. Jia, X., Yang, W., Qin, M., Li, J.: J. Magn. Magn. Mater. 321, 2354 (2009)

    Article  ADS  Google Scholar 

  16. Clavel, G., Willinger, M.-G., Zitoun, D., Pinna, N.: Eur. J. Inorg. Chem. 2008, 863 (2008)

    Article  Google Scholar 

  17. Yu, J., Duan, L., Wang, Y., Rao, G.: Physica B. 403, 4264 (2008)

    Article  ADS  Google Scholar 

  18. Srivastava, S.K., Lejay, P., Barbara, B., Boisron, O., Pailhes, S., Bouzerar, G.: J. Appl. Phys. 110, 043929 (2011)

    Article  ADS  Google Scholar 

  19. J. Zippel, M. Lorenz, A. Setzer, G. Wagner, N. Sobolev, P. Esquinazi, and M Grundmann, Phys. Rev. B 82, 125209 (2010)

  20. Hong, N.H., Park, C.-K., Raghavender, A.T., Ciftja, O., Bingham, N.S., Phan, M.H., Srikanth, H.: J. Appl. Phys. 111(2012), 07C302

  21. Young, R.A.: “The Rietveld Method” International Union of Crystallography. Oxford University Press, New York (1996)

    Google Scholar 

  22. Spaek, J., Lewicki, A., Tarnawski, Z., Furdyna, J.K., Galazka, P.R., Obuszko, Z.: Phys. Rev. B. 33, 3407 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Srivastava.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S.K. Magnetic Property of Mn-Doped Monoclinic ZrO2 Compounds. J Supercond Nov Magn 33, 2501–2505 (2020). https://doi.org/10.1007/s10948-020-05522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05522-1

Keywords

Navigation