Skip to main content
Log in

Hot Tearing Behavior of \(\text{Mg}{-}4\text{Zn}{-}x\text{Sn}{-}0.6\text{Zr}\) Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of different Sn additions (0, 0.5, 1.0, 2.0 and 3.0 wt%) on hot tearing susceptibility (HTS) of Mg–Zn–Zr alloy were studied using a “T-shaped” hot tearing mold in a pouring temperature of 700 °C and a mold temperature of 270 °C. The “Clyne–Davies” hot tearing prediction model and commercial simulation software, Procast, were used to characterize the HTS of alloys. The dendrite coherency temperature was obtained by means of differential thermal analysis. The phases evolution, microstructures and morphology of the crack zone of Mg–4Zn–xSn–0.6Zr alloys were investigated by using X-ray diffraction and scanning electron microscope. The experimental results show that the HTS of Mg–4Zn–xSn–0.6Zr alloys decreases with Sn additions up to 1.0 wt%, and then exhibits a slight increase with further Sn additions up to 3.0 wt%. The Sn additions into Mg–4Zn–0.6Zr alloy can form Mg2Sn phase with high melting point. Appropriate addition of Sn can refine grain size, decrease the dendrite coherency temperature, increase the thickness of liquid film and the feeding ability at the end of solidification, which reduce the HTS of the alloy. However, excessive Sn addition will make Mg2Sn aggregate and grow up, and hinder the residual liquid-phase feeding in the late solidification stage, resulting in an increase in HTS of the alloy. The order of HTS of studied alloys is: CSC(Mg–4Zn–0.6Zr) > CSC(Mg–4Zn–0.5Sn–0.6Zr) > CSC(Mg–4Zn–3Sn–0.6Zr) > CSC(Mg–4Zn–2Sn–0.6Zr) > CSC(Mg–4Zn–1Sn–0.6Zr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. F.S. Pan, M.B. Yang, D.F. Zhang, L.Y. Wang, P.D. Ding, Research and development of wrought magnesium alloys in China. Mater. Sci. Forum 488–489, 413–418 (2005)

    Article  Google Scholar 

  2. G.H. Wu, M. Sun, W. Wang, W.J. Ding, New research development on purification technology of magnesium alloys. Chin. J. Nonferrous Met. 20(6), 1021–1031 (2010)

    CAS  Google Scholar 

  3. Z. Liu, S.B. Zhang, P.L. Mao, F. Wang, Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Trans. Nonferrous Met. Soc. China 24(4), 907–914 (2014)

    Article  CAS  Google Scholar 

  4. K. Hantzsche, J. Bohlena, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater. 63(7), 725–730 (2010)

    Article  CAS  Google Scholar 

  5. S.B. Yi, J. Bohlen, F. Heinemann, D. Letzig, Mechanical anisotropy and deep drawing behavior of AZ31 and ZE10 magnesium alloy sheets. Acta Mater. 58(2), 592–605 (2010)

    Article  CAS  Google Scholar 

  6. Z. Wang, S. Yao, Y. Feng, Z. Liu, Y.Z. Li, F. Wang, P.L. Mao, Solidification pathways and hot tearing susceptibility of MgZnxY4Zr0.5 alloys. China Foundry 15(2), 124–131 (2018)

    Article  Google Scholar 

  7. Y. Zhou, P.L. Mao, Z. Wang, Y.Z. Li, Z. Liu, F. Wang, Effects of copper content and mold temperature on the hot tearing susceptibility of Mg–7Zn–xCu–0.6Zr alloys. Metall. Mater. Trans. B 49, 3444–3455 (2018)

    Article  CAS  Google Scholar 

  8. H. Huang, P.H. Fu, Y.X. Wang, L.M. Peng, H.Y. Jiang, Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Trans. Nonferrous Met. Soc. China 24(4), 922–929 (2014)

    Article  CAS  Google Scholar 

  9. J.F. Song, Z. Wang, Y.D. Huang, A. Srinivasan, F. Beckmann, K.U. Kainer, H. Norbert, Effect of Zn addition on hot tearing behaviour of Mg–0.5Ca–xZn alloys. Mater. Des. 87(15), 157–170 (2015)

    Article  CAS  Google Scholar 

  10. J.H. Chen, Z.H. Chen, H.G. Yan, F.Q. Zhang, K. Liao, Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys. J. Alloys Compd. 461, 209–215 (2008)

    Article  CAS  Google Scholar 

  11. Z. Liu, Y. Zhang, P.L. Mao, C.H. Yang, Effects of Sn on microstructure and mechanical properties of Mg–Zn–Ca magnesium alloys. Spec. Cast. Nonferrous Alloys 32(11), 999–1001 (2012)

    CAS  Google Scholar 

  12. S. Wei, T. Zhu, M. Hodgson, W. Gao, Effects of Sn addition on the microstructure and mechanical properties of as-cast, rolled and annealed Mg–4Zn alloys. Mater. Sci. Eng. A 585(12), 139–148 (2013)

    Article  CAS  Google Scholar 

  13. C.F. Fang, D.D. Song, G.X. Liu, H. Huang, X.L. Dong, X.G. Zhang, Effects of Sn addition forms on microstructure and mechanical properties of AZ31 magnesium alloy. Mater. Res. Innov. 19(10), 273–276 (2015)

    Google Scholar 

  14. G.G. Zhang, J.H. Chen, H.G. Yan, B. Su, X. He, M. Ran, Effects of artificial aging on microstructure and mechanical properties of the Mg–4.5Zn–4.5Sn–2Al alloy. J. Alloys Compd. 592(15), 250–257 (2014)

    Article  CAS  Google Scholar 

  15. T. Zhang, J. Shen, J.X. Sang, Y. Li, P.P. He, Effects of Sn addition on the microstructures and mechanical properties of Mg–6Zn–3Cu–xSn magnesium alloys. Metall. Mater. Trans. A 46(8), 3732–3743 (2015)

    Article  CAS  Google Scholar 

  16. M.B. Yang, F.S. Pan, Effects of Sn addition on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy. Mater. Des. 31(1), 68–75 (2010)

    Article  CAS  Google Scholar 

  17. H.K. Dong, F. Wang, Z. Wang, J.K. Liu, Z. Liu, P.L. Mao, Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy. Mater. Res. Express 5(3), 036513 (2018)

    Article  Google Scholar 

  18. B. Wang, Z. Liu, P.L. Mao, Z. Wang, F. Wang, Hot tearing susceptibility of Mg–Al–Ca alloy with different Sn additions. Chin. J. Rare Met. 244(7), 647–653 (2016)

    Google Scholar 

  19. M. Pokorny, C. Monroe, C. Beckermann, L. Bichler, C. Ravindran, Prediction of hot tear formation in a magnesium alloy permanent mold casting. Int. J. Metalcast. 2(4), 41–53 (2008)

    Article  CAS  Google Scholar 

  20. M.R. Nasresfahani, M.J. Rajabloo, Research on the effect of pouring temperature on hot-tear susceptibility of A206 alloy by simulation. Metall. Mater. Trans. B 45(5), 1827–1833 (2014)

    Article  CAS  Google Scholar 

  21. J.Z. Zhu, J.Z. Guo, M. Samonds, Numerical modeling of hot tearing formation in metal casting and its validations. Int. J. Numer. Methods Eng. 87, 289–308 (2011)

    Article  Google Scholar 

  22. Y.Q. Li, J.F. Wang, W.J. Gou, Electron theory analysis on Sn improving property of Mg–Al alloy. Foundry 61(9), 995–997 (2012)

    CAS  Google Scholar 

  23. T.W. Clyne, G.J. Davies, Volume contractions accompanying solidification of aluminium–copper alloys. Mater. Sci. Technol. 12(5), 233–238 (1978)

    CAS  Google Scholar 

  24. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. J. Mater. Sci. 49(1), 353–362 (2014)

    Article  CAS  Google Scholar 

  25. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Hot tearing susceptibility of binary Mg–Y alloy castings. Mater. Des. 47, 90–100 (2013)

    Article  CAS  Google Scholar 

  26. J. Li, R. Chen, Y. Ma, W. Ke, Hot tearing of sand cast Mg-5 wt.% Y-4 wt.% RE (WE54) alloy. Acta Metall. Sin. (Engl. Lett.) 26(6), 728–734 (2013)

    Article  CAS  Google Scholar 

  27. D.T. Zhang, M. Suzuki, K. Maruyama, Study on the texture of a friction stir welded Mg–Al–Ca alloy. Acta Metall. Sin. (Engl. Lett.) 19(5), 335–340 (2006)

    Article  CAS  Google Scholar 

  28. Y.S. Wang, Q.D. Wang, W.J. Ding, C. Lu, Development of hot tear mechanism for cast alloys. Spec. Cast. Nonferrous Alloys 12(2), 48–50 (2000)

    Google Scholar 

  29. H. Ding, H.Z. Fu, Z.G. Liu, R.Z. Chen, B.C. Liu, Z.G. Zhong, D.Z. Tang, Compensation of solidification contraction and hot cracking tendency of alloys. Acta Metall. Sin. 33(9), 921–926 (1997)

    CAS  Google Scholar 

  30. Z.M. Zhang, T. Lii, C.J. Xu, X.F. Guo, Microstructure of binary Mg–Al eutectic alloy wires produced by the Ohno continuous casting process. Acta Metall. Sin. (Engl. Lett.) 21(4), 275–281 (2008)

    Article  CAS  Google Scholar 

  31. Q.Y. Sun, D. Liu, L.P. Wang et al., Influences of rod diameter and sand-mould strength on hot tearing in Mg WE43A constrained rod castings. Int. J. Metalcast. 13, 407–416 (2019)

    Article  CAS  Google Scholar 

  32. W.L. Cheng, M. Wang, Z.P. Que, C.X. Xu, J.S. Zhang, W. Liang, B.S. You, S.S. Park, Microstructure and mechanical properties of high speed indirect-extruded Mg–5Sn–(1,2,4) Zn alloys. J. Cent. South Univ. 20, 2643–2649 (2013)

    Article  CAS  Google Scholar 

  33. W.L. Cheng, S.S. Park, W.N. Tang, Influence of rare earth on the microstructure and age hardening response of indirect-extruded Mg–5Sn–4Zn alloy. J. Rare Earths 28(5), 785–789 (2010)

    Article  CAS  Google Scholar 

  34. W.L. Cheng, S.S. Park, W.N. Tang, B.S. You, B.H. Koo, Influence of alloying elements on microstructure and microhardness of Mg–Sn–Zn-based alloys. Trans. Nonferrous Met. Soc. China 20(12), 2246–2252 (2010)

    Article  Google Scholar 

  35. G. Zhu, Z. Wang, W. Qiu et al., Effect of yttrium on hot tearing susceptibility of Mg–6Zn–1Cu–0.6Zr alloys. Int. J. Metalcast 14, 179–190 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by LiaoNing Revitalization Talents Program (No. XLYC1807021), Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019JH3/30100014), and Technologies for Young and Middle-aged Scientists of Shenyang (No. RC180111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, F., Wang, F., Wang, Z. et al. Hot Tearing Behavior of \(\text{Mg}{-}4\text{Zn}{-}x\text{Sn}{-}0.6\text{Zr}\) Alloys. Inter Metalcast 15, 292–305 (2021). https://doi.org/10.1007/s40962-020-00464-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00464-9

Keywords

Navigation