Skip to main content

Advertisement

Log in

Alleviation of drought stress in faba bean (Vicia faba L.) by exogenous application of β-aminobutyric acid (BABA)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Drought stress is one of the most prevalent environmental factors limiting faba bean (Vicia faba L.) crop productivity. β-aminobutyric acid (BABA) is a non-protein amino acid that may be involved in the regulation of plant adaptation to drought stress. The effect of exogenous BABA application on physiological, biochemical and molecular responses of faba bean plants grown under 18% PEG-induced drought stress were investigated. The results showed that the application of 1 mM of BABA improved the drought tolerance of faba bean. The application of BABA increased the leaf relative water content, leaf photosynthesis rate (A), transpiration rate (E), and stomatal conductance (gs), thereby decreased the water use efficiency. Furthermore, exogenous application of BABA decreased production of hydrogen peroxide (H2O2), malondialdehyde and electrolyte leakage levels, leading to less cell membrane damage due to oxidative stress. Regarding osmoprotectants, BABA application enhanced the accumulation of proline, and soluble sugars, which could improve the osmotic adjustment ability of faba bean under drought challenge. Interestingly, mended antioxidant enzyme activities like catalase, guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase and their transcript levels may lead to counteract the damaging effects of oxidative stress and reducing the accumulation of harmful substances in BABA-treated faba bean plants. In addition, exogenous BABA significantly induced the accumulation of drought tolerance-related genes like VfMYB, VfDHN, VfLEA, VfERF, VfNCED, VfWRKY, VfHSP and VfNAC in leaves and roots, suggesting that BABA might act as a signal molecule to regulate the expression of drought tolerance-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abid G, Hessini K, Aouida M, Aroua I, Baudoin JP, Muhovski Y, Mergeai G, Sassi K, Machraoui M, Souissi F, Jebara M (2017) Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress. Biotechnol Agron Soc Environ 21:146–159

    Google Scholar 

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Akter N, Rafiqul Islam M, Abdul Karim M, Hossain T (2014) Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotechnol 17:41–48

    Article  Google Scholar 

  • Amri M, Abbes Z, Trabelsi I, Omri N, Allagui MB, Najar A, Kumari S, Selmi H, Mediouni J, Ben Saleh H, Maalouf F, Halila MH, Kharrat M (2016) Achievements of the national faba bean (Vicia faba L.) breeding program in Tunisia. In: International conference on pulses, Marrakesh, Morocco, 18–20 April, p 96

  • An Y, Zhou P, Liang J (2014) Effects of exogenous application of abscisic acid on membrane stability, osmotic adjustment, photosynthesis and hormonal status of two lucerne (Medicago sativa L.) genotypes under high temperature stress and drought stress. Crop Pasture Sci 65:274–286

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Del Longo OT, Gonzalez CA, Pastori GM, Trippi VS (1993) Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol 34:1023–1028

    Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlation with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:96–101

    Google Scholar 

  • Du YL, Wang ZY, Fan JW, Turner NC, Wang T, Li FM (2012) β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J Exp Bot 63:4849–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167–168

    Article  CAS  PubMed  Google Scholar 

  • EL Sabagh A, Hossain A, Islam MS, Barutcular C, Fahad S, Ratnasekera D, Kumar N, Meena RS, Vera P, Saneoka H (2018) Role of osmoprotectants and soil amendments for sustainable soybean (Glycine max L.) production under drought condition: a review. J Exp Biol Agric Sci 6:32–41

    Google Scholar 

  • Gao H, Wang Y, Xu P, Zhang Z (2018) Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci 9:997. https://doi.org/10.3389/fpls.2018.00997

    Article  PubMed  PubMed Central  Google Scholar 

  • González L, González-Vilar M (2001) Determination of relative water content. In: Reigosa Roger MJ (ed) Handbook of plant ecophysiology techniques. Springer, Dordrecht, pp 207–212

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plant without soil. Calif Agric Exp Stn Circ 342:32

    Google Scholar 

  • Hussain S, Saleem MF, Iqbal J, Ibrahim M, Atta S, Ahmed T, Rehmani MIA (2014) Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought stress. Pak J Agric Sci 51:49–58

    Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Pan Y, Zheng X, Cheng X, Liu M, Ma H, Ge X (2018) OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol 98:51–65

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Puthur JT (2016a) Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci 23:242–254

    Article  Google Scholar 

  • Jisha KC, Puthur JT (2016b) Seed priming with BABA (β-aminobutyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253:227–289

    Article  CAS  Google Scholar 

  • Kabbadj A, Makoudi B, Mouradi M, Pauly N, Frendo P, Ghoulam C (2017) Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba. PLoS ONE. https://doi.org/10.1371/journal.pone.0190284

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Lee SC, Kim JY, Kim SJ, Aye SS, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  • Li W, Liu J, Ashraf U, Li G, Li Y, Lu W, Gao L, Han F, Hu J (2016a) Exogenous γ-aminobutyric Acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Front Plant Sci 7:919. https://doi.org/10.3389/fpls.2016.00919

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yu J, Peng Y, Huang B (2016b) Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Sci Rep 6:30338. https://doi.org/10.1038/srep30338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Peng Y, Huang B (2018) Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). Int J Mol Sci 19:1623. https://doi.org/10.3390/ijms19061623

    Article  CAS  PubMed Central  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamadi N, Baghizadeh A, Saadatmand S, Asrar Z (2017) Alleviation of oxidative stress induced by drought stress through priming by β-aminobutyric acid (BABA) in rapeseed (Brassica napus L.) plants. Iran J Plant Physiol 7:2203–2210

    Google Scholar 

  • Murray MB, Cape JN, Flower D (1989) Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol 113:307–311

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ouji A, Naouari M, Mouelhi M, Ben Younes M (2017) Yield and yield components of faba bean (Vicia faba L.) as influenced by supplemental irrigation under semi-arid region of Tunisia. World J Agric Res 5:52–57

    Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of norway spruce Picea abies L. Plant Physiol 106:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomortsev A, Dorofeev N, Sokolova L, Zorina S, Katysheva N (2018) Physiological and biochemical response of winter triticale crowns at different soil moisture levels. Pak J Biol Sci 21:387–393

    Article  CAS  PubMed  Google Scholar 

  • Quero A, Fliniaux O, Elboutachfaiti R, Petit E, Guillot X, Hawkins S, Courtois J, Mesnard F (2015) β-aminobutyric acid increases drought tolerance and reorganizes solute content and water homeostasis in flax (Linum usitatissimum). Metabolomics 11:1363–1375

    Article  CAS  Google Scholar 

  • Rajaei P, Mohamadi N (2013) Effect of beta-aminobutyric acid (BABA) on enzymatic and non-enzymatic antioxidants of Brassica napus L. under drought. Int J Biosci 3:41–47

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shaw AK, Bhardwaj PK, Ghosh S, Roy S, Saha S, Sherpa AR, Saha SK, Hossain Z (2016) β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.). Environ Sci Pollut Res 23:2437–2453

    Article  CAS  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310. https://doi.org/10.3389/fpls.2018.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS, Bukhari NA (2015) Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci 16:10214–10227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sos-Hegedus A, Juhasz Z, Poor P, Kondrak M, Antal F, Tari I, Mauch-Mani B, Banfalvi Z (2014) Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato. PLoS ONE. https://doi.org/10.1371/journal.pone.0114297

    Article  PubMed  PubMed Central  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, van der Ent S, Van Hulten M, Pozo M, van Oosten V, van Loon LC, Mauch-Mani B, Turlings TCJ, Pieterse CMJ (2009) Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC-WPRS Bull 44:3–13

    Google Scholar 

  • Tworkoski T, Wisniewski M, Artlip T (2011) Application of BABA and s-ABA for drought resistance in apple. J Appl Hortic 13:85–90

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vijayakumari K, Jisha KC, Puthur JT (2016) GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiol Plant 38:230–244

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:245–251

    Google Scholar 

  • Wang Y, Gu W, Meng Y, Xie T, Li L, Li J, Wei S (2017a) γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Sci Rep 7:43609. https://doi.org/10.1038/srep43609

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang Q, Liu M, Bo C, Wang X, Ma Q, Cheng B, Cai R (2017b) Overexpression of a maize MYB48 gene confers drought tolerance in transgenic Arabidopsis plants. J Plant Biol 60:612–621

    Article  CAS  Google Scholar 

  • Xiang J, Chen X, Hu W, Xiang Y, Yan M, Wang J (2018) Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Rep 37:1585–1595

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Fu-lai L, Dong J (2017) Priming: a promising strategy for crop production in response to future climate. J Integr Agric 16:60345–60352

    Google Scholar 

  • Yang ZB, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ (2012) Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). J Exp Bot 63:3109–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong B, Xie H, Li Z, Li YP, Zhang Y, Nie G, Zhang XQ, Ma X, Huang LK, Yan YH, Peng Y (2017) Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Front Physiol 8:1107. https://doi.org/10.3389/fphys.2017.01107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Zhong M, Shu S, Du N, Sun J, Guo S (2016) Proteomic and physiological analyses reveal putrescine responses in roots of cucumber stressed by NaCl. Front Plant Sci 7:1035. https://doi.org/10.3389/fpls.2016.01035

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassen Abid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, G., Ouertani, R.N., Jebara, S.H. et al. Alleviation of drought stress in faba bean (Vicia faba L.) by exogenous application of β-aminobutyric acid (BABA). Physiol Mol Biol Plants 26, 1173–1186 (2020). https://doi.org/10.1007/s12298-020-00796-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00796-0

Keywords

Navigation