Skip to main content
Log in

Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Triacontanol (TRIA) being an endogenous plant growth regulator facilitates numerous plant metabolic activities leading to better growth and development. Moreover, TRIA plays essential roles in alleviating the stress-accrued alterations in crop plants via modulating the activation of the stress tolerance mechanisms. The present article critically focuses on the role of exogenously applied TRIA in morpho-physiology and biochemistry of plants for example, in terms of growth, photosynthesis, enzymatic activity, biofuel synthesis, yield and quality under normal and stressful conditions. This article also enlightens the mode of action of TRIA and its interaction with other phytohormones in regulating the physio-biochemical processes in counteracting the stress-induced damages in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abubakar AR, Naira A, Moieza A (2012) Effect of plant biostimulants on flowering, fruit drop, yield and return bloom of pomegranate cv. Kandhari Kabuli. Asian J Hortic 7:473–477

    Google Scholar 

  • Abubakar AR, Ashraf N, Ashraf M (2013) Effect of plant biostimulants on growth, chlorophyll content, flower drop and fruit set of pomegranate cv. Kandhari Kabuli. Int J Agric Environ Biotechnol 6:305–309

    Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Singh M, Ram M (2010) Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J Plant Interact 5:273–281

    Article  CAS  Google Scholar 

  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23:731–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul 37:1007–1024

    Article  CAS  Google Scholar 

  • Ahmad HFS, Metwally H, El-Shafey AS (2013) Effect of cadmium on growth, flowering and fruiting of Zea mays L. and possible roles of triacontanol in alleviating cadmium toxicity. Egypt J Bot 53:23–44

    Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Aziz R, Shahbaz M (2015) Triacontanol-induced regulation in the key osmoprotectants and oxidative defense system of sunflower plants at various growth stages under salt stress. Int J Agric Biol 17:881–890

    Article  CAS  Google Scholar 

  • Aziz R, Shahbaz M, Ashraf M (2013) Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak J Bot 45:1913–1918

    CAS  Google Scholar 

  • Baba TR, Ali A, Kumar A, Husain M (2017) Effect of exogenous application of salicylic acid and triacontanol on growth characters and yield of strawberry. Pharma Innov 6:274–279

    CAS  Google Scholar 

  • Bhat FA, Ganai BA, Uqab B (2017) Carbonic anhydrase: mechanism, structure and importance in higher plants. Asian J Plant Sci Res 7:17–23

    CAS  Google Scholar 

  • Borowski E (2009) Response to chilling in cucumber (Cucumis sativus L.) plants treated with triacontanol and Asahi SL. Acta Agrobot 62:165–172

    Article  Google Scholar 

  • Borowski E, Blamowski ZK (2009) The effects of triacontanol ‘TRIA’ and Asahi SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hortic 21:39–48

    Article  Google Scholar 

  • Cavusoglu K, Kabar K (2007) Comparative effects of some plant growth regulators on the germination of barley and radish seeds under high temperature stress. Eurasian J Biosci 1:1–10

    CAS  Google Scholar 

  • Çavuşoğlu K, Kılıç S, Kabar K (2008) Effects of some plant growth regulators on stem anatomy of radish seedlings grown under saline (NaCl) conditions. Plant Soil Environ 54:428–433

    Article  Google Scholar 

  • Chen X, Yuan H, Chen R, Zhu L, Du B, Weng Q, He G (2002) Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth stimulator. Plant Cell Physiol 43:869–876

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yuan H, Chen R, Zhu L, He G (2003) Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul 40:249–256

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energ Convers Manag 52:163–170

    Article  Google Scholar 

  • Dhall RK, Sanjeev A, Ahuja S (2004) Effect of triacontanol (vipul) on yield and yield attributing characters of tomato (Lycopersicon esculentum Mill.). Environ Ecol 22:64–66

    CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Fariduddin Q, Zaid A, Mohammad F (2019) Plant growth regulators and salt stress: mechanism of tolerance trade-off. In: Akhtar M (ed) Salt stress, microbes, and plant interactions: causes and solution. Springer, Singapore, pp 91–111

    Chapter  Google Scholar 

  • Farooq M, Wahid A, Lee DJ, Ito O, Siddique KH (2009) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  • Fraternale D, Giamperi L, Ricci D, Rocchi MBL, Guidi L, Epifano F, Marcotullio MC (2003) The effect of triacontanol on micropropagation and on secretory system of Thymus mastichina. Plant Cell Tiss Org Cult 74:87–97

    Article  CAS  Google Scholar 

  • Freeman B, Albrigo LG, Biggs RH (1979) Cuticular waxes of developing leaves and fruit of blueberry, Vaccinium ashei Reade cv. Bluegem. J Am Soc Hortic Sci 104:398–403

    Google Scholar 

  • Gadallah MAA (2000) Effects of acid mist and ascorbic acid treatment on the growth, stability of leaf membranes, chlorophyll content and some mineral elements of Carthamus tinctorius, the safflower. Water Air Soil Poll 118:311–327

    Article  CAS  Google Scholar 

  • Gatica AM, Arrieta G, Espinosa AM (2008) Direct somatic embryogenesis in Coffea arabica L. cvs catura and catuai: effect of triacontanol, light condition, and medium consistence. Agron Costarric 32:139–147

    Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Bhuiyan TF, Anee TI, Inafuku M, Oku H, Fujita M (2017) Salicylic acid: An All-rounder in regulating abiotic stress responses in plants. In: El-Esawi MA (ed) Phytohormones-signaling mechanisms and crosstalk in plant development and stress responses. InTech, Croatia, pp 31–75. https://doi.org/10.5772/intechopen.68213

  • Hashmi N, Khan MMA, Naeem M, Idrees M, Aftab T, Moinuddin (2010) Ameliorative effect of triacontanol on the growth, photosynthetic pigments, enzyme activities and active constituents of essential oil of Ocimum basilicum L. Med Arom Plant Sci Biotechnol 5:20–24

    Google Scholar 

  • Hufford CD, Oguntimein BO (1978) Non-polar constituents of Jatropha curcas. Lloydia 41:161–165

    CAS  Google Scholar 

  • Idrees M, Khan MMA, Aftab T, Naeem M (2010) Synergistic effects of gibberellic acid and triacontanol on growth, physiology, enzyme activities and essential oil content of Coriandrum sativum L. Asian Aust. J Plant Sci Biotechnol 4:24–29

    Google Scholar 

  • Islam S, Zaid A, Mohammad F (2020) Role of triacontanol in counteracting the ill effects of salinity in plants: a review. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10064-w

    Article  Google Scholar 

  • Jogawat A (2019) Crosstalk among phytohormone signaling pathways during abiotic stress. In: Tripathi DK, Roychoudhury A (eds) Molecular plant abiotic stress: biology and biotechnology. Wiley, Oxford, pp 209–220

    Google Scholar 

  • Karam EA, Keramat B (2017) Foliar spray of triacontanol improves growth by alleviating oxidative damage in coriander under salinity. Indian J Plant Physiol 22:120–124

    Article  CAS  Google Scholar 

  • Karam EA, Keramat B, Asrar Z, Mozafari H (2016) Triacontanol-induced changes in growth, oxidative defense system in Coriander (Coriandrum sativum) under arsenic toxicity. Indian J Plant Physiol 21:137–142

    Article  CAS  Google Scholar 

  • Karam EA, Keramat B, Asrar Z, Mozafari H (2017) Study of interaction effect between triacontanol and nitric oxide on alleviating of oxidative stress arsenic toxicity in coriander seedlings. J Plant Interact 12:14–20

    Article  CAS  Google Scholar 

  • Keramat B, Sorbo S, Maresca V, Asrar Z, Mozafari H, Basile A (2017) Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L. Environ Exp Bot 141:161–169

    Article  CAS  Google Scholar 

  • Khan MMA, Mujibur-Rahman M, Naeem M, Mohammad F, Siddiqui MH, Khan MN (2006) Triacontanol-induced changes in growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Elect J Environ Agric Food Chem 5:1492–1499

    CAS  Google Scholar 

  • Khan R, Khan MMA, Singh M, Nasir S, Naeem M, Siddiqui MH, Mohammad F (2007) Gibberellic acid and triacontanol can ameliorate the opium yield and morphine production in opium poppy (Papaver somniferum L.). Acta Agric Scand Sect B Soil Plant Sci 57:307–312

    CAS  Google Scholar 

  • Khan MMA, Bhardwaj G, Naeem M, Mohammad F, Singh M, Nasir S, Idrees M (2009) Response of tomato (Solanum lycopersicum L.) to application of potassium and triacontanol. Acta Hort 823:199–208

    Article  CAS  Google Scholar 

  • Khan ZH, Mohammad F, Khan MMA (2014) Enhancing the growth, yield and production of essential oil and citral in lemongrass by the application of triacontanol. Int J Agric Res 4:113–122

    Google Scholar 

  • Khanam D, Mohammad F (2017) Effect of structurally different plant growth regulators (PGRs) on the concentration, yield, and constituents of peppermint essential oil. J Herb Spices Med Plant 23:26–35

    Article  CAS  Google Scholar 

  • Khanam D, Mohammad F (2018) Plant growth regulators ameliorate the ill effect of salt stress through improved growth, photosynthesis, antioxidant system, yield and quality attributes in Mentha piperita L. Acta Physiol Plant 40:188

    Article  CAS  Google Scholar 

  • Khandaker MM, Faruq G, Rahman MM, Sofian-Azirun M, Boyce AN (2013) The influence of 1-triacontanol on the growth, flowering, and quality of potted bougainvillea plants (Bougainvillea glabra var. Elizabeth Angus) under natural conditions. Sci World J. https://doi.org/10.1155/2013/308651

    Article  Google Scholar 

  • Krishnan RR, Kumari BD (2008) Effect of N-triacontanol on the growth of salt stressed soybean plants. J Biosci 19:53–62

    Google Scholar 

  • Kumaravelu G, Livingstone VD, Ramanujam MP (2000) Triacontanol-induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol Plant 43:287–290

    Article  CAS  Google Scholar 

  • Lee KR, Kim KS, Roh SM, Jin KD (1979) Investigation of triacontanol content in Korean legume. Yeungnam Univ Gyungsam, Korea Thesis Collect 13:255–263

    CAS  Google Scholar 

  • Li X, Zhong Q, Li Y, Li G, Ding Y, Wang S, Chen L (2016) Triacontanol reduces transplanting shock in machine-transplanted rice by improving the growth and antioxidant systems. Front Plant Sci 7:872

    PubMed  PubMed Central  Google Scholar 

  • Luzbetak DJ, Torrance SJ, Hoffman JJ, Cole JR (1978) Isolation of levo hardwickiic-acid and 1-triacontanol from Croton californicus. J Nat Prod 42:75–80

    Google Scholar 

  • Maresca V, Sorbo S, Keramat B, Basile A (2017) Effects of triacontanol on ascorbate-glutathione cycle in Brassica napus L. exposed to cadmium-induced oxidative stress. Ecotoxicol Environ Saf 144:268–274

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Meena SK, Jat NL, Sharma B, Meena VS (2014) Effect of plant growth regulators and sulphur on productivity of coriander (Coriandrum sativum L.) in Rajasthan. Ecoscan 6:69–73

    Google Scholar 

  • Meena SK, Jat NL, Sharma B, Meena VS (2015) Effect of plant growth regulators and sulfur on productivity and nutrient concentration of coriander (Coriandrum sativum L.). Environ Ecol 33:1249–1253

    Google Scholar 

  • Morkunas I, Mai VC, Waśkiewicz A, Formela M, Goliński P (2014) Major phytohormones under abiotic stress. In: Ahmad P, Wani M (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York

    Google Scholar 

  • Muthuchelian K, Murugan C, Nedunchezhian N, Kulandaivelu G (1997) Photosynthesis and growth of Erythrina variegata as affected by water stress and triacontanol. Photosynthetica 33:241–248

    Article  CAS  Google Scholar 

  • Muthuchelian K, Bertamini M, Nedunchezhian N (2001) Triacontanol can protect Erythrina variegata from cadmium toxicity. J Plant Physiol 158:1487–1490

    Article  CAS  Google Scholar 

  • Muthuchelian K, Meenakshi V, Nedunchezhian N (2003a) Protective effect of triacontanol against acidic mists in Samanea saman (Jacq.) Merrill seedlings: differential responses in growth, 14 CO2 fixation, ribulose-1, 5-bisphosphate carboxylase, and electron transport activities. Photosynthetica 41:335–341

    Article  CAS  Google Scholar 

  • Muthuchelian K, Velayutham M, Nedunchezhian N (2003b) Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings: changes in growth and photosynthetic activities. Plant Sci 165:1253–1259

    Article  CAS  Google Scholar 

  • Naeem M, Khan MN (2005) Effect of foliar spray of triacontanol on growth performance of hyacinth bean. Bionotes 7:62

    Google Scholar 

  • Naeem M, Khan MMA, Siddiqui MH (2009) Triacontanol stimulates nitrogen fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci Hortic 121:389–396

    Article  CAS  Google Scholar 

  • Naeem M, Idrees M, Aftab T, Khan MMA, Moinuddin (2010) Changes in photosynthesis, enzyme activities and production of anthraquinone and sennoside content of coffee senna (Senna occidentalis L.) by triacontanol. Int J Dev Biol 4:53–59

    Google Scholar 

  • Naeem M, Khan MMA, Idrees M, Aftab T (2011) Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul 65:195–206

    Article  CAS  Google Scholar 

  • Naeem M, Khan MMA, Moinuddin (2012) Triacontanol: a potent plant growth regulator in agriculture. J Plant Interact 7:129–142

    Article  CAS  Google Scholar 

  • Naeem M, Idrees M, Aftab T, Alam MM, Khan MMA, Uddin M, Varshney L (2014) Employing depolymerised sodium alginate, triacontanol and 28-homobrassinolide in enhancing physiological activities, production of essential oil and active components in Mentha arvensis L. Ind Crop Prod 55:272–279

    Article  CAS  Google Scholar 

  • Naeem M, Aftab T, Idrees M, Singh M, Ali A, Khan MMA, Varshney L (2017) Modulation of physiological activities, active constituents and essential oil production of Mentha arvensis L. by concomitant application of depolymerised carrageenan, triacontanol and 28-homobrassinolide. J Essent Oil Res 29:179–188

    Article  CAS  Google Scholar 

  • Naeem M, Ansari AA, Aftab T, Shabbir A, Alam MM, Khan MMA, Uddin M (2019) Application of triacontanol modulates plant growth and physiological activities of Catharanthus roseus (L.). Int J Bot Stud 4:131–135

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Ahamed KU, Hakeem KR, Ozturk M, Fujita M (2015) Plant responses and tolerance to high temperature stress: role of exogenous phytoprotectants. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, Cham, pp 385–435

    Chapter  Google Scholar 

  • Nasir S (2009) Influence of triacontanol and macronutrient elements on the growth, yield and alkaloid content of Withania somnifera Dunal L. and Datura innoxia Mill. Doctoral dissertation, Aligarh Muslim University

  • Nazir F, Hussain A, Fariduddin (2019) Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environ Exp Bot 162:479–495

    Article  CAS  Google Scholar 

  • Niranjana SR, Pandit A, Prakash HS, Shetty HS (1999) Effect of triacontanol on the seed quality of maize, paddy and sunflower. Seed Sci Technol 27:1007–1013

    Google Scholar 

  • Nogalska A, Czapla J, Stasiulewicz L, Klasa A (2008) Effects of growth regulators, applied alone or in combination with magnesium sulfate, on oat yield. Pol J Nat Sci 23:563–572

    Article  Google Scholar 

  • Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem 115:126–140

    Article  CAS  PubMed  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2013) Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. Photosynthetica 51:541–551

    Article  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2014) Triacontanol-induced changes in growth, yield and leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions. Turk J Bot 38:896–913

    Article  Google Scholar 

  • Perveen S, Iqbal M, Nawaz A, Parveen A, Mahmood S (2016) Induction of drought tolerance in Zea mays L. by foliar application of triacontanol. Pak J Bot 48:907–915

    CAS  Google Scholar 

  • Perveen S, Iqbal M, Parveen A, Akram MS, Shahbaz M, Akber S, Mehboob A (2017) Exogenous triacontanol-mediated increase in phenolics, proline, activity of nitrate reductase, and shoot k + confers salt tolerance in maize (Zea mays L.). Braz J Bot 40:1–11

    Article  Google Scholar 

  • Raghava N, Raghava RP (2010) Effect of miraculan of seed germination parameters in cowpea under water stress. Biosci Biotech Res 7:353–358

    Google Scholar 

  • Rajasekaran LR, Blake TJ (1999) New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. J Plant Growth Regul 18:175–181

    Article  CAS  PubMed  Google Scholar 

  • Ramanarayan K, Swamy GS (2004) Triacontanol negatively modulates the jasmonic acid-stimulated proteinase inhibitors in tomato (Lycopersicon esculentum). J Plant Physiol 161:489–492

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Reddy BO, Giridhar P, Ravishankar GA (2002) The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W & A. Plant Cell Tissue Org Cult 71:253–258

    Article  Google Scholar 

  • Ries S (1991) Triacontanol and its second messenger 9-β-l (+)-adenosine as plant growth substances. Plant Physiol 95:986–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries S, Wert V (1992) Response of maize and rice to 9-beta-(+) adenosine applied under different environmental conditions. Plant Growth Regul 11:69–74

    Article  CAS  Google Scholar 

  • Ries SK, Wert V, Sweeley CC, Leavitt RA (1977) Triacontanol: a new naturally occurring plant growth regulator. Science 195:1339–1341

    Article  CAS  PubMed  Google Scholar 

  • Ries S, Wert V, O’Leary NFD, Nair M (1990) 9-β-l (+) Adenosine: a new naturally occurring plant growth substance elicited by triacontanol in rice. Plant Growth Regul 9:263–273

    Article  CAS  Google Scholar 

  • Ries S, Savithiry S, Wert V, Widders I (1993) Rapid induction of ion pulses in tomato, cucumber, and maize plants following a foliar application of l (+)-adenosine. Plant Physiol 101:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama ES, Kabra AN, Ji MK, Kim JR, Min B, Jeon BH (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–103

    Article  CAS  PubMed  Google Scholar 

  • Sanadhya D, Kathuria E, Malik CP (2012) Effect of drought stress and its interaction with two phytohormones on Vigna radiata seed germination and seedling growth. Int J Life Sci 1:201–2017

    Article  Google Scholar 

  • Savithiry S, Wert V, Ries S (1992) Influence of 9-beta-l (plus)-adenosine on malate dehydrogenase activity in rice. Physiol Plant 84:460–466

    Article  CAS  Google Scholar 

  • Shahbaz M, Noreen N, Perveen S (2013) Triacontanol modulates photosynthesis and osmoprotectants in canola (Brassica napus L.) under saline stress. J Plant Interact 8:350–359

    Article  CAS  Google Scholar 

  • Sharma MK, Farooqui KD, Bhat KM, Singh SR (2008) Effect of triacontanol on growth and yield of apple cv red delicious under kashmir valley conditions. Environ Ecol 26:637–639

    CAS  Google Scholar 

  • Sharma N, Singh K, Thakur A (2011) Growth, fruit set, yield and fruit quality of olives (Olea europaea L.) as influenced by nutrients and bio-stimulants under rainfed condition. Acta Hort 890:385–392

    Article  CAS  Google Scholar 

  • Shivran AC, Jat NL, Singh D, Sastry EVD, Rajput SS (2016) Response of fenugreek (Trigonella foenum graecum L.) to plant growth regulators and their time of application. J Spices Aromat Crops 25:169–174

    Google Scholar 

  • Shukla A, Farooqi AA, Shukla YN, Sharma S (1992) Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regul 11:165–171

    Article  CAS  Google Scholar 

  • Singh M (2008) Influence of triacontanol, nitrogen and phosphorus on the growth, yield and quality of Ginger Zingiber officinale Rosc and Turmeric Curcuma longa. Doctoral dissertation, Aligarh Muslim University

  • Singh M, Khan MMA, Moinuddin Naeem M (2012) Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosyst 146:106–113

    Article  Google Scholar 

  • Soundararajan M, Swamy GS, Gaonkar SK, Deshmukh S (2018) Influence of triacontanol and jasmonic acid on metabolomics during early stages of root induction in cultured tissue of tomato (Lycopersicon esculentum). Plant Cell Tissue Org Cult 133:147–157

    Article  Google Scholar 

  • Srivastava NK, Sharma S (1991) Effect of triacontanol on photosynthetic characteristics and essential oil accumulation in Japanese mint (Mentha arvensis L.). Photosynthetica 25:55–60

    CAS  Google Scholar 

  • Suman K, Kondamudi R, Rao YV, Kiran TV, Swamy KN, Rao PR, Subramanyam D, Voleti SR (2013) Effect of triacontanol on seed germination, seedling growth and antioxidant enzyme in rice under poly ethylene glycol induced drought stress. Andhra Agric J 60:132–137

    Google Scholar 

  • Swamy SG, Ramanarayan K, Inamdar LS, Inamdar SR (2009) Triacontanol and jasmonic acid differentially modulate the lipid organization as evidenced by the fluorescent probe behavior and 31 p nuclear magnetic resonance shifts in model membranes. J Membr Biol 228:165–177

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Thakur PS, Singh RP (1998) Influence of paclobutrazol and triacontanol on growth and water relations in olive varieties under water stress. Indian J Plant Physiol 3:116–120

    CAS  Google Scholar 

  • Thind SK (1991) Effects of a long chain aliphatic alcohol mixture on growth and solute accumulation in water stressed wheat seedlings under laboratory conditions. Plant Growth Regul 10:223–234

    Article  CAS  Google Scholar 

  • Uchiyama T, Ogasawara N (1981) Constituents of plant leaf wax contained in rice callus tissues. Agric Biol Chem 45:1261–1263

    CAS  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Verma A, Malik CP, Gupta VK, Bajaj BK (2011) Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea (L.). Braz J Plant Physiol 23:271–277

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Mosa KA (2018) Engineering plants for heavy metal stress tolerance. Rend Lincei Sci Fis Nat 29:709–723

    Article  Google Scholar 

  • Waqas M, Shahzad R, Khan AL, Asaf S, Kim YH, Kang SM, Lee IJ (2016) Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress. Plant Physiol Biochem 99:118–125

    Article  CAS  PubMed  Google Scholar 

  • Wierzbowska J, Sienkiewicz S, Bowszys T (2010) Effect of growth regulators on the mineral balance in spring triticale. J Elem 15:745–756

    Google Scholar 

  • Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, Zhang L (2017) The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol 239:87–96

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Mohammad F, Fariduddin Q (2019) Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-019-00715-y

    Article  PubMed  Google Scholar 

  • Zhang T, Wang X, Wang Y, Han J, Mao P, Majerus M (2009) Plant growth regulator effects on balancing vegetative and reproductive phases in alfalfa seed yield. Agron J 101:1139–1145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shaistul Islam is thankful to University Grants Commission New Delhi India for providing the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firoz Mohammad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Mohammad, F. Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiol Mol Biol Plants 26, 871–883 (2020). https://doi.org/10.1007/s12298-020-00815-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00815-0

Keywords

Navigation