Skip to main content
Log in

Automatic pick-and-place using a magnetically navigated microrobot and a motorized micromanipulator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper demonstrates the automatic pick-and-place of a small object in 2D using a magnetically navigated microrobot (MNM) and a motorized micromanipulator (MM). A master/slave control mechanism is used in the manipulation process. The MM is the master manipulator. The MNM is the slave manipulator. To avoid damaging the object by large holding force and to maintain successful holding, a position-based impedance control algorithm is implemented to the slave side. The feedback force to the impedance controller is obtained from an off-board force determination mechanism which overcomes the disadvantages of installing an on-board force sensor on the MNM. The performance of the proposed manipulation system was examined experimentally by transporting a hard-shell object to its desired destinations with predefined holding force. To the authors knowledge, this is the first work reported using a magnetically navigated microrobot to complete manipulation tasks with a screw type manipulator. The proposed system has potential utility in microinjection if the MNM was scaled down to proper size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Al Mashagbeh M, Khamesee M (2015) Virtual performance evaluation of an industrial SCARA robot prior to real-world task. Microsyst Technol 21(12):2605–2609

    Article  Google Scholar 

  • Al Mashagbeh M, Al-Dulaimi T, Khamesee M (2017) Design and optimization of a novel magnetically-actuated micromanipulator. Microsyst Technol 23(8):3589–3600

    Article  Google Scholar 

  • Bonitz R, Hsia T (1994) Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1521–1527

  • Bonitz R, Hsia T (1996) Internal Force-Based Impedance control for cooperating manipulators. IEEE Trans Robot Autom 12(1):78–89

    Article  Google Scholar 

  • Cappelleri D, Fu Z (2012) Cooperative micromanipulators for 3D micromanipulation and assembly. In: Proceedings of the ASME 2012 international design engineering technical conference & computers and information in engineering conference, Chicago, IL, USA, Aug 12–15, pp 177–185

  • Carpi F, Kastelein N, Talcott M, Pappone C (2011) Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans Biomed Eng 58:231–234

    Article  Google Scholar 

  • Chan S, Liaw H (1996) Generalized impedance control of robot for assembly tasks requiring compliant manipulation. IEEE Trans Ind Electron 43(4):453–461

    Article  Google Scholar 

  • Chen M, Lin T, Hung S, Fu L (2012) Design and experiment of a macro-micro planar maglev positioning system. IEEE Trans Ind Electron 59(11):4128–4139

    Article  Google Scholar 

  • Dai C, Zhang Z, Lu Y, Shan G, Wang X, Zhao Q, Ru C, Sun Y (2019) Robotic manipulation of deformable cells for orientation control. IEEE Trans Robot. https://doi.org/10.1109/TRO.2019.2946746

    Article  Google Scholar 

  • Erhart S, Hirche S (2015) Internal force analysis and load distribution for cooperative multi-robot manipulation. IEEE Trans Robot 31(5):1238–1243

    Article  Google Scholar 

  • Gueaieb W, Karray F, Salah A (2007) A robust hybrid intelligent position/force control scheme for cooperative manipulation. IEEE/ASME TMech 12(2):109–125

    Article  Google Scholar 

  • Heck D, Kostic D, Denasi A, Nijmeijer H (2013) Internal and External force-based impedance control for cooperative manipulation. In: Proceedings of the European Control Conference, Zurich, Switzerland, pp 2299–2304

  • Heinrichs B, Nariman S, Thornton-Trump A (1997) Position-based impedance control of an industrial hydraulic manipulator. IEEE Control Syst 17(1):46–52

    Article  Google Scholar 

  • Hu C, Wang Z, Zhu Y, Zhang M, Liu H (2016) Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments. IEEE Trans Ind Electron 63(9):5763–5773

    Article  Google Scholar 

  • Jian M, Tal J, Luh Y, Zheng Y (1990) Compliant Coordination control of two moving industrial robots. IEEE Trans Robot Autom 6(3):186–191

    Google Scholar 

  • Khamesee M, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE TMech 7(1):1–14

    Google Scholar 

  • Kummer M, Abbott J, Kratochvil B, Borer R, Sengul A, Nelson B (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  • Liang C, Wang F, Tian Y, Zhao X, Zhang D (2017) Development of a high speed and precision wire clamp with both position and force regulation. Robot Comput Integr Manuf 44:208–217

    Article  Google Scholar 

  • Masood M, Saleem M, Khan S, Hamza A (2019) Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications. Microsyst Technol 25(4):1171–1184

    Article  Google Scholar 

  • Mehrtash M, Khamesee M (2013) Micro-domain force estimation using Hall-effect sensors for a magnetic microrobotic station. J Adv Mech Des Syst Manufact 7(1):2–14

    Article  Google Scholar 

  • Mehrtash M, Khamesee M, Tarao S, Tsuda N, Chang J (2012a) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415

    Article  Google Scholar 

  • Mehrtash M, Khamesee MB, Tsuda N, Chang JY (2012b) Motion control of a magnetically levitated microrobot using magnetic fux measurement. Microsyst Technol 18(9–10):1417–1424

    Article  Google Scholar 

  • Mehrtash M, Zhang X, Khamesee M (2015) Bilateral magnetic micromanipulation using off-board force sensor. IEEE/ASME TMech 20(6):3223–3231

    Article  Google Scholar 

  • Park K, Lee S, Yi K, Kim S, Kwak Y, Wang I (1996) Contactless magnetically levitated silicon wafer transport system. Mechatronics 6(5):591–610

    Article  Google Scholar 

  • Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomimet 6:1–15

    Article  Google Scholar 

  • Wang P, Xu Q (2018) Design and testing of a flexure-based constant-force stage for biological cell micromanipulation. IEEE Trans Autim Sci Eng 15(3):1114–1126

    Article  Google Scholar 

  • Wang H, Huang Q, Shi Q, Yue T, Chen S, Nakajima M, Takeuchi M, Fukuda T (2015) Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans Bio Eng 62(11):2620–2628

    Article  Google Scholar 

  • Xu Q (2013) Precision position/force interaction control of a piezoelectric multi morphmicrogripper for micro assembly. IEEE Trans Autim Sci Eng 10(3):503–514

    Article  Google Scholar 

  • Xu Q (2017) Design and Development of a novel compliant gripper with integrated position and grasping/interaction force sensing. IEEE Trans Autim Sci Eng 14(3):1415–1428

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Canada Foundation for Innovation, and in part by the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Behrad Khamesee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Khamesee, M.B. Automatic pick-and-place using a magnetically navigated microrobot and a motorized micromanipulator. Microsyst Technol 26, 1733–1744 (2020). https://doi.org/10.1007/s00542-019-04719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04719-2

Navigation