Skip to main content
Log in

Uniqueness and Ergodicity of Stationary Directed Polymers on \(\mathbb {Z}^2\)

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the ergodic theory of stationary directed nearest-neighbor polymer models on \(\mathbb {Z}^2\), with i.i.d. weights. Such models are equivalent to specifying a stationary distribution on the space of weights and correctors that satisfy certain consistency conditions. We show that for a prescribed weight distribution and corrector mean, there is at most one stationary polymer distribution which is ergodic under the \(e_1\) or \(e_2\) shift. Further, if the weights have more than two moments and the corrector mean vector is an extreme point of the superdifferential of the limiting free energy, then the corrector distribution is ergodic under each of the \(e_1\) and \(e_2\) shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, S.N., Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations in unbounded environments. J. Math. Pures Appl. 97(5), 460–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balázs, M., Rassoul-Agha, F., Seppäläinen, T.: Large deviations and wandering exponent for random walk in a dynamic beta environment. Ann. Probab. 47(4), 2186–2229 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barraquand, G., Corwin, I.: Random-walk in Beta-distributed random environment. Probab. Theory Relat. Fields 167(3–4), 1057–1116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, C.S.: On the input-output map of a \(G/G/1\) queue. J. Appl. Probab. 31(4), 1128–1133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaumont, H., Noack, C.: Characterizing stationary \(1+1\) dimensional lattice polymer models. Electron. J. Probab. 23, 19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaumont, H., Noack, C.: Fluctuation exponents for stationary exactly solvable lattice polymer models via a Mellin transform framework. ALEA Lat. Am. J. Probab. Math. Stat. 15(1), 509–547 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comets, F.: Directed Polymers in Random Environments. Lecture Notes in Mathematics, vol. 2175. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  8. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment: a review. In: Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., vol. 39, pp. 115–142. Math. Soc. Japan, Tokyo (2004)

  9. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(1), 1130,001, 76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corwin, I.: Kardar-Parisi-Zhang Universality. Notices Am. Math. Soc. 63(3), 230–239 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corwin, I., Seppäläinen, T., Shen, H.: The strict-weak lattice polymer. J. Stat. Phys. 160(4), 1027–1053 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., Yilmaz, A.: Ratios of partition functions for the log-gamma polymer. Ann. Probab. 43(5), 2282–2331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giacomin, G.: Random polymer models. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  14. Gray, R.M.: Probability, random processes, and ergodic properties, 2nd edn. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  15. Halpin-Healy, T., Takeuchi, K.A.: A KPZ cocktail—shaken, not stirred...toasting 30 years of kinetically roughened surfaces. J. Stat. Phys. 160(4), 794–814 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. den Hollander, F.: Random Polymers. Lecture Notes in Mathematics, vol. 1974. Springer, Berlin (2009)

    Book  Google Scholar 

  17. Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in ising systems due to random impurities. Phys. Rev. Lett. 54(25), 2708–2711 (1985)

    Article  ADS  Google Scholar 

  18. Janjigian, C., Rassoul-Agha, F.: Busemann functions and Gibbs measures in directed polymer models on \(\mathbb{Z}^2\). (2018). Extended version (arXiv:1810.03580v2)

  19. Janjigian, C., Rassoul-Agha, F.: Busemann functions and Gibbs measures in directed polymer models on \(\mathbb{Z}^2\). Ann. Probab. (2019). https://doi.org/10.1214/19-AOP1375

    Article  MATH  Google Scholar 

  20. Janjigian, C., Rassoul-Agha, F.: Existence, uniqueness, and stability of global solutions of a discrete stochastic Burgers equation. (2019). Preprint

  21. Janjigian, C., Rassoul-Agha, F., Seppäläinen, T.: Geometry of geodesics through Busemann measures in directed last-passage percolation (2019). Preprint (arXiv:1908.09040)

  22. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  23. Kosygina, E.: Homogenization of stochastic Hamilton-Jacobi equations: brief review of methods and applications. In: Stochastic and Partial Differential Equations, Contemporary Mathematics, vol. 429, pp. 189–204. American Mathematical Society, Providence, RI (2007)

  24. Krug, J., Meakin, P., Halpin-Healy, T.: Amplitude universality for driven interfaces and directed polymers in random media. Phys. Rev. A 45, 638–653 (1992)

    Article  ADS  Google Scholar 

  25. O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stoch. Process. Appl. 96(2), 285–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Quastel, J.: Introduction to KPZ. Current Developments in Mathematics, pp. 125–194. International Press, Somerville, MA (2011)

    MATH  Google Scholar 

  27. Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rassoul-Agha, F., Seppäläinen, T.: Quenched point-to-point free energy for random walks in random potentials. Probab. Theory Relat. Fields 158(3–4), 711–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40(1), 19–73 (2012). Corrected version available at arXiv:0911.2446

  30. Spohn, H.: KPZ scaling theory and the semidiscrete directed polymer model. In: Random matrix theory, interacting particle systems, and integrable systems, Math. Sci. Res. Inst. Publ., vol. 65, pp. 483–493. Cambridge University Press, New York (2014)

  31. Thiery, T.: Stationary measures for two dual families of finite and zero temperature models of directed polymers on the square lattice. J. Stat. Phys. 165(1), 44–85 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Thiery, T., Le Doussal, P.: On integrable directed polymer models on the square lattice. J. Phys. A 48(46), 465,001, 41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. Janjigian was partially supported by a postdoctoral grant from the Fondation Sciences Mathématiques de Paris while working at Université Paris Diderot. F. Rassoul-Agha was partially supported by National Science Foundation grants DMS-1407574 and DMS-1811090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas Rassoul-Agha.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjigian, C., Rassoul-Agha, F. Uniqueness and Ergodicity of Stationary Directed Polymers on \(\mathbb {Z}^2\). J Stat Phys 179, 672–689 (2020). https://doi.org/10.1007/s10955-020-02541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02541-z

Keywords

Navigation