Skip to main content
Log in

Classical Solutions of the Divergence Equation with Dini Continuous Data

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the boundary value problem associated with the divergence operator on a bounded regular subset of \({\mathbb {R}}^{n}\), with homogeneous Dirichlet boundary condition. We prove the existence of a classical solution under slight assumptions on the datum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslov. Math. J. 44(1), 109–140 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga, H.: On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid. J. Differ. Equ. 54(3), 373–389 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Beirão da Veiga, H.: Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions problem. J. Math. Fluid Mech. 16(3), 539–550 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Beirão da Veiga, H.: Elliptic boundary value problems in spaces of continuous functions. Discrete Contin. Dyn. Syst. Ser. S 9(1), 43–52 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Berselli, L.C., Bisconti, L.: On the existence of almost-periodic solutions for the 2D dissipative Euler equations. Rev. Mat. Iberoam. 31(1), 267–290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berselli, L.C., Longo, P.: Classical solutions for the system \(\mathbf{v}=\mathbf{g}\), with vanishing Dirichlet boundary conditions Discrete Contin. Dyn. Syst. Ser. S 12(2), 215–229 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators \({\rm div}\) and \({\rm grad}\). In Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics, Volume 1980 of Trudy Sem. S. L. Soboleva, No. 1, pp. 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980)

  8. Borchers, W., Sohr, H.: On the equations \({\rm rot}\,{\mathbf{v}}={\mathbf{g}}\) and \({\rm div}\,{\mathbf{u}}=f\) with zero boundary conditions. Hokkaido Math. J. 19(1), 67–87 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Brezis, H.: On the equation div \(Y=f\) and application to control of phases. J. Am. Math. Soc. 16(2), 393–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bousquet, P., Mironescu, P., Russ, E.: A limiting case for the divergence equation. Math. Z. 274(1–2), 427–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Csató, G., Dacorogna, B., Kneuss, O.: The Pullback Equation for Differential Forms, Vol. 83 of Progress in Nonlinear Differential Equations and Their Application. Birkhäuser/Springer, New York (2012)

  12. Dacorogna, B., Fusco, N., Tartar, L.: On the solvability of the equation \({\rm div}\,u=f\) in \(L^1\) and in \(C^0\). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14(3), 239–245 (2003). (Renato Caccioppoli and modern analysis)

    MathSciNet  MATH  Google Scholar 

  13. De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Dini, U.: Sur la méthode des approximations successives pour les équations aux derivées partielles du deuxième ordre. Acta Math. 25(1), 185–230 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. In: Steady-State Problems. Springer Monographs in Mathematics. Springer, New York (2011)

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition)

  17. Huber, A.: The divergence equation in weighted- and \(L^{p(\cdot )}\)-spaces. Math. Z. 267(1–2), 341–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kapitanskiĭ, L.V., Piletskas, K.I.: Some problems of vector analysis. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 138, 65–85 (1984). (Boundary value problems of mathematical physics and related problems in the theory of functions, 16)

    MathSciNet  Google Scholar 

  19. Koch, H.: Transport and instability for perfect fluids. Math. Ann. 323(3), 491–523 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozono, H., Yanagisawa, T.: Global Div–Curl lemma on bounded domains in \({\mathbb{R}}^3\). J. Funct. Anal. 256(11), 3847–3859 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. In: Mathematics and its Applications, Vol. 2. Gordon and Breach Science Publishers, New York (1969)

  22. Maremonti, P.: Pointwise asymptotic stability of steady fluid motions. J. Math. Fluid Mech. 11, 348–382 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris (1967)

    MATH  Google Scholar 

  24. Petrini, H.: Les dérivées premières et secondes du potential logarithmique. J. Math. Pures Appl. 6(6), 127–223 (1909)

    MATH  Google Scholar 

  25. Shapiro, V.L.: Generalized and classical solutions of the nonlinear stationary Navier–Stokes equations. Trans. Am. Math. Soc. 216, 61–79 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tartar, L.: Topics in nonlinear analysis. In: Publications Mathématiques d’Orsay 78, vol. 13. Université de Paris-Sud, Département de Mathématique, Orsay (1978)

  27. Vishik, M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145(3), 197–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research that led to the present paper was partially supported by a grant of the group GNAMPA of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi C. Berselli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berselli, L.C., Longo, P. Classical Solutions of the Divergence Equation with Dini Continuous Data. J. Math. Fluid Mech. 22, 26 (2020). https://doi.org/10.1007/s00021-020-0488-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-0488-4

Keywords

Mathematics Subject Classification

Navigation