Skip to main content
Log in

A Blow-up Criterion for the Modified Navier–Stokes–Fourier Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the initial boundary value problem for the three-dimensional modified compressible Navier–Stokes–Fourier equations proposed by Brenner. We establish a blow-up criterion for local strong solutions in terms of the density \(\rho \) and the temperature \(\theta \) only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4, 417–430 (2004)

    Article  MathSciNet  Google Scholar 

  2. Brenner, H.: Kinematics of volume transport. Physica A 349, 11–59 (2005)

    Article  ADS  Google Scholar 

  3. Brenner, H.: Navier–Stokes revisited. Physica A 349, 60–132 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Brenner, H.: Fluid mechanics revisited. Physica A 370, 190–224 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations of compressible isentropic fluids. J. Math. Fluid Dyn. 3, 358–392 (2001)

    Article  Google Scholar 

  6. Feireisl, E., Vasseur, Alexis: New perspectives in fluid dynamics: mathematical analysis of a model proposed by Howard Brenner. In: Fursikov, A., Galdi, G., Pukhnachev, V. (eds.) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 153–179. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  7. Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7, 315–338 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jiang, S.: Global smooth solutions of the equations of a viscous heat-conducting, one-dimensional gas with density-dependent viscosity. Math. Nachr. 190, 169–183 (1998)

    Article  MathSciNet  Google Scholar 

  9. Jiang, S., Zhang, P.: On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215, 559–581 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jiang, S., Zhang, P.: Axisymmetric solutions of the 3-D Navier–Stokes equations for compressible isentropic fluids. J. Pures Appl. Math. 82, 949–973 (2003)

    Article  MathSciNet  Google Scholar 

  11. Kazhikhov, A.V., Shelukhin, V.V.: Unique global smooth solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1997)

    Article  Google Scholar 

  12. Lions, P.L.: Mathematical Topics in Fluid Dynamics. Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)

    MATH  Google Scholar 

  13. Shelukhin, V.V.: A shear flow problem for the compressible Navier–Stokes equations. Int. J. Nonlinear Mech. 33, 247–257 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Academic Press, New York (1966)

    Google Scholar 

Download references

Acknowledgements

The research is partially supported by the NSFC (No. 11971234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Ozawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Kozono

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Ozawa, T. A Blow-up Criterion for the Modified Navier–Stokes–Fourier Equations. J. Math. Fluid Mech. 22, 16 (2020). https://doi.org/10.1007/s00021-019-0477-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0477-7

Keywords

Mathematics Subject Classification

Navigation