Skip to main content
Log in

The Plane Exterior Boundary-Value Problem for Nonhomogeneous Fluids

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

It is proved that the Stokes problem for nonhomogeneous viscous fluids in an exterior Lipschitz two-dimensional domain has a solution if and only if the data satisfy a suitable compatibility condition. Moreover, it is showed that it is unique in large uniqueness classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use standard notation as, e.g., in [3]; \(C_R =\{x\in {\mathbb {R}}^2:r=|{ x}|<R\}\), \(T_R =C_{2R} {\setminus } \overline{C}_R \), \(\Omega _R=\Omega \cap C_R\); \(R_0\) is a fixed positive constant such that \({\mathcal {I}} =\complement C_{R_0}\subset {\Omega }\), where \(\complement C_{R_0}={\mathbb {R}}^2{\setminus }\overline{C}_{R_0}\); \(e_r=r^{-1}{ x}\), for all \(x\ne o\); \(D^{1,q}(\Omega )=\{\phi \in L^1_\mathrm{loc}(\Omega ):\Vert \nabla \phi \Vert _{L^q(\Omega )}<+\infty \}\), \(BMO=\{\phi \in L^1_\mathrm{loc}({\mathbb {R}}^2):\sup _R{\textstyle {1\over R^2}}\int _{C_R}|\phi -{\textstyle {1\over |C_R|}}\int _{C_R}\phi |<+\infty \}\). If S is a vector function space, the symbol \(S_\sigma \) denotes the subset of divergence free elements of S. If f(x) and \(\phi (r)\) are functions defined in \({\mathcal {I}}\), then \(f(x)=o(\phi (r))\) and \(f(x)=O(\phi (r))\) mean respectively that \(\lim _{r\rightarrow +\infty }(f/\phi )=0\) and that \(f/\phi \) is bounded in \({\mathcal {I}}\); c will denote a positive constant whose numerical value in not essential to the purposes of the present paper.

  2. These solutions were called exceptional in [4]. Note that (1.2) is expressed by an ordinary integral since \( T(h,Q)\in L^{q}(\partial \Omega )\) [12], \(q<2+\epsilon \).

  3. Under assumption (1.5) it falls the important case of a mixture of two (or more) immiscible homogeneous viscous fluids.

References

  1. Campanato, S.: Sistemi ellittici in forma di divergenza. Regolarità all’interno, Quaderni Scuola Norm. Sup. Pisa (1980)

  2. Ferone, A., Russo, R., Tartaglione, A.: The Stokes paradox in inhomogeneous elastostatics. arXiv:1805.01232

  3. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady-State Problems. Springer, Berlin (2011)

    MATH  Google Scholar 

  4. Galdi, G.P., Simader, C.G.: Existence, uniqueness and \(L^q\) estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)

    Article  Google Scholar 

  5. Giaquinta, M., Modica, G.: Non linear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana (1994). English translation - Direct methods in the calculus of variations. Word Scientific (2004)

  7. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, London (1981)

    MATH  Google Scholar 

  8. Morrey Jr., C.B.: Morrey: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    Book  Google Scholar 

  9. Kondratév, V.A., Oleinik, O.A.: Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Uspekhi Mat. Nauk 43, 55–98 (1988). (in Russian). English: Russ. Math. Surveys 43(1988), 65–119

  10. Piccinini, L., Spagnolo, S.: On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (III) 26, 391–402 (1972)

    MATH  Google Scholar 

  11. Russo, A., Tartaglione, A.: Strong uniqueness theorems and the Phragmèn-Lindelöf principle in nonhomogeneous elastostatics. J. Elast. 102, 133–149 (2011)

    Article  Google Scholar 

  12. Russo, R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics. Springer, Berlin (2010)

    Google Scholar 

  13. Taylor, J.L., Kim, S., Brown, R.M.: The Green function for elliptic systems in two dimensions. Commun. PDE 38, 1574–1600 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonsina Tartaglione.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Communicated by K. Pileckas

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, R., Tartaglione, A. The Plane Exterior Boundary-Value Problem for Nonhomogeneous Fluids. J. Math. Fluid Mech. 22, 14 (2020). https://doi.org/10.1007/s00021-019-0473-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0473-y

Keywords

Mathematics Subject Classification

Navigation