Skip to main content
Log in

New Regularity Criteria Based on Pressure or Gradient of Velocity in Lorentz Spaces for the 3D Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we derive regular criteria via pressure or gradient of velocity in Lorentz spaces to the 3D Navier–Stokes equations. It is shown that a Leray–Hopf weak solution is regular on (0, T] provided that either the norm \(\Vert \Pi \Vert _{L^{p,\infty }(0,T; L ^{q,\infty }({\mathbb {R}}^{3}))} \) with \( \frac{2}{p}+\frac{3}{q}=2\) \((\frac{3}{2}<q<\infty )\) or \(\Vert \nabla \Pi \Vert _{L^{p,\infty }(0,T; L ^{q,\infty }({\mathbb {R}}^{3}))} \) with \( \frac{2}{p}+\frac{3}{q}=3\) \((1<q<\infty )\) is small. This gives an affirmative answer to a question proposed by Suzuki (Theory Methods Appl 75:3849–3853, 2012, Remark 2.4, p. 3850). Moreover, regular conditions in terms of \(\nabla u\) obtained here generalize known ones to allow the time direction to belong to Lorentz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopf, E.: Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen. Math. Nachr. (German) 4, 213–231 (1950)

    Article  Google Scholar 

  2. Leray, J.: Sur le mouvement déun liquide visqueux emplissant léspace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  3. da Veiga, H.Beirao: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}}^{n}\). Chin. Ann. Math. Ser. B 16, 407–412 (1995)

    MATH  Google Scholar 

  4. da Veiga, H. Beirao: Concerning the regularity of the solutions to the Navier–Stokes equations via the truncation method. II. In: Gauthier-Villars (ed.) Équations aux dérivées partielles et applications, pp. 127–138. Elsevier, Paris (1998)

  5. Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions of the Navier–Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bjorland, C., Vasseur, A.: Weak in space, log in time improvement of the Ladyzhenskaja–Prodi–Serrin criteria. J. Math. Fluid Mech. 13, 259–269 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bosia, S., Pata, V., Robinson, J.: A weak-\(L^p\) Prodi–Serrin type regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 16, 721–725 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cai, Z., Fan, J., Zhai, J.: Regularity criteria in weak spaces for 3-dimensional Navier–Stokes equations in terms of the pressure. Differ. Integr. Equ. 23, 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Carrillo, J.A., Ferreira, L.C.F.: Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math. 151, 111–142 (2007)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Price, W.G.: Blow-up rate estimates for weak solutions of the Navier–Stokes equations (English summary). R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 2625–2642 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Choe, H.J., Wolf, J., Yang, M.: On regularity and singularity for \(L^\infty (0, T;L^{3}_{w}(R^3))\) solutions to the Navier–Stokes equations. Math. Ann. (2019). https://doi.org/10.1007/s00208-019-01843-2

    Article  Google Scholar 

  12. Escauriaza, L., Seregin, G., Šverák, V.: On \(L^{\infty }L^{3}\) -solutions to the Navier–stokes equations and Backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)

    Article  Google Scholar 

  13. He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. He, C., Wang, Y.: Limiting case for the regularity criterion of the Navier–Stokes equations and the magnetohydrodynamic equations. Sci. China Math. 53, 1767–1774 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kim, H., Kozono, H.: Interior regularity criteria in weak spaces for the Navier–Stokes equations. Manuscr. Math. 115, 85–100 (2004)

    Article  MathSciNet  Google Scholar 

  16. Kozono, H.: Removable singularities of weak solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 23, 949–966 (1998)

    Article  MathSciNet  Google Scholar 

  17. Phuc, N.C.: Navier–Stokes equations in nonendpoint borderline Lorentz spaces. J. Math. Fluid Mech. 17, 741–760 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  19. Sohr, H.: Aregularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MathSciNet  Google Scholar 

  20. Suzuki, T.: Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier–Stokes equations. J. Math. Fluid Mech. 14, 653–660 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. Suzuki, T.: A remark on the regularity of weak solutions to the Navier–Stokes equations in terms of the pressure in Lorentz spaces. Nonlinear Anal. Theory Methods Appl. 75, 3849–3853 (2012)

    Article  MathSciNet  Google Scholar 

  22. Struwe, M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988)

    Article  MathSciNet  Google Scholar 

  23. Struwe, M.: On a Serrin-type regularity criterion for the Navier–Stokes equations in terms of the pressure. J. Math. Fluid Mech. 9, 235–242 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Takahashi, S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math. 69, 237–254 (1990)

    Article  MathSciNet  Google Scholar 

  25. Yuan, B.: On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space. Proc. Am. Math. Soc. 138, 2025–2036 (2010)

    Article  MathSciNet  Google Scholar 

  26. Zhou, Y.: Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain. Math. Ann. 328, 173–192 (2004)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Y.: On regularity criteria in terms of pressure for the Navier–Stokes equations in \({\mathbb{R}}^{3}\). Proc. Am. Math. Soc. 134, 149–156 (2005)

    Article  Google Scholar 

  28. Zhou, Y.: On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in \({\mathbb{R}}^{n}\). Z. Angew. Math. Phys. 57, 384–392 (2006)

    Article  MathSciNet  Google Scholar 

  29. Pineau, B., Yu, X.: A new Prodi–Serrin type regularity criterion in velocity directions. J. Math. Fluid Mech. 20, 1737–1744 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wang, W., Zhang, Z.: On the interior regularity criteria and the number of singular points to the Navier–Stokes equations. J. Anal. Math. 123, 139–170 (2014)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Wei, W., Yu, H.: \(\varepsilon \)-regularity criteria in Lorentz spaces to the 3D Navier–Stokes equations. In preparation (2019)

  32. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  Google Scholar 

  33. O’Neil, R.: Convolution operaters and \(L^{p, q}\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  34. Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  35. Malý, J.: Advanced theory of differentiation Lorentz spaces (2003) http://www.karlin.mff.cuni.cz/~maly/lorentz.pdf

  36. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. dell’Unione Mat. Ital. 1, 479–500 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to the anonymous referee and the associated editor for the invaluable comments and suggestions which helped to improve the paper significantly. Wang was partially supported by the National Natural Science Foundation of China under Grant (No. 11971446 and No. 11601492) and the Youth Core Teachers Foundation of Zhengzhou University of Light Industry. Wei was partially supported by the National Natural Science Foundation of China under Grant (No. 11601423, No. 11701450, No. 11701451, No. 11771352, No. 11871057) and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0763).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Kozono.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Wang, Y. & Wei, W. New Regularity Criteria Based on Pressure or Gradient of Velocity in Lorentz Spaces for the 3D Navier–Stokes Equations. J. Math. Fluid Mech. 22, 13 (2020). https://doi.org/10.1007/s00021-019-0476-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0476-8

Keywords

Mathematics Subject Classification

Navigation