Skip to main content

Advertisement

Log in

A hierarchical model of perceptual multistability involving interocular grouping

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Ambiguous visual images can generate dynamic and stochastic switches in perceptual interpretation known as perceptual rivalry. Such dynamics have primarily been studied in the context of rivalry between two percepts, but there is growing interest in the neural mechanisms that drive rivalry between more than two percepts. In recent experiments, we showed that split images presented to each eye lead to subjects perceiving four stochastically alternating percepts (Jacot-Guillarmod et al. Vision research, 133, 37–46, 2017): two single eye images and two interocularly grouped images. Here we propose a hierarchical neural network model that exhibits dynamics consistent with our experimental observations. The model consists of two levels, with the first representing monocular activity, and the second representing activity in higher visual areas. The model produces stochastically switching solutions, whose dependence on task parameters is consistent with four generalized Levelt Propositions, and with experiments. Moreover, dynamics restricted to invariant subspaces of the model demonstrate simpler forms of bistable rivalry. Thus, our hierarchical model generalizes past, validated models of binocular rivalry. This neuromechanistic model also allows us to probe the roles of interactions between populations at the network level. Generalized Levelt’s Propositions hold as long as feedback from the higher to lower visual areas is weak, and the adaptation and mutual inhibition at the higher level is not too strong. Our results suggest constraints on the architecture of the visual system and show that complex visual stimuli can be used in perceptual rivalry experiments to develop more detailed mechanistic models of perceptual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alias, D., & Blake, R. (2004). Binocular rivalry. Cambridge: MIT Press.

    Book  Google Scholar 

  • Andrew, T.J., & Lotto, R.B. (2004). Fusion and rivalry are dependent on the perceptual meaning of visual stimuli. Current Biology, 14, 418–423.

    Article  CAS  Google Scholar 

  • Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J., & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience, 22(19), 8633–8646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrington, K.F. (1993). Neural network models for color brightness percception and binocular rivalry. PhD thesis, Boston University.

  • Bartels, A., & Logothetis, N.K. (2010). Binocular rivalry: a time-depedence of eye and stimulus contributions. Journal of Vision, 10, 1–14.

    Article  Google Scholar 

  • Beaudot, W.H., & Mullen, K.T. (2003). How long range is contour integration in human color vision? Visual Neuroscience, 20(01), 51–64.

    Article  PubMed  Google Scholar 

  • Benda, J., & Herz, A.V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15 (11), 2523–2564.

    Article  PubMed  Google Scholar 

  • Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review, 96, 145–167.

    Article  CAS  PubMed  Google Scholar 

  • Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2, 5–38.

    Article  Google Scholar 

  • Blake, R., & Logothetis, N.K. (2002). Visual competition. Nature Reviews Neuroscience, 3, 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Blake, R., & Overton, R. (1979). The site of binocular rivalry suppression. Perception, 8(2), 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Blake, R., Westendorf, D., & Fox, R. (1990). Temporal perturbations of binocular rivalry. Perception & Psychophysics, 48(6), 593–602.

    Article  CAS  Google Scholar 

  • Bosking, W., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience, 17, 2112– 2127.

    Article  CAS  PubMed  Google Scholar 

  • Bossink, C., Stalmeier, P., & De Weert, C. (1993). A test of Levelt’s second proposition for binocular rivalry. Vision Research, 33(10), 1413–1419.

    Article  CAS  PubMed  Google Scholar 

  • van Boxtel, J.J.A., Alais, D., & van Ee, R. (2008). Retinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback. Journal of Vision, 8(5), 17–17.

    Article  PubMed  Google Scholar 

  • Brascamp, J., Pearson, J., Blake, R., & Van Den Berg, A. (2009). Intermittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations. Journal of Vision, 9(3), 3.

    Article  PubMed  Google Scholar 

  • Brascamp, J., Klink, P., & Levelt, W.J. (2015). The ‘laws’ of binocular rivalry: 50 years of Levelt’s propositions. Vision research, 109, 20–37.

    Article  CAS  PubMed  Google Scholar 

  • Brascamp, J.W., Van, R.E., Noest, A.J., Jacobs, R.H., & van den Berg, A.V. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6, 1244–1256.

    Article  PubMed  Google Scholar 

  • Brascamp, J.W., Sohn, H., Lee, S.H., & Blake, R.H. (2013). A monocular contribution to stimulus rivalry. PNAS.

  • Braun, J., & Mattia, M. (2010). Attractors and noise: twin drivers of decisions and multistability. NeuroImage, 52(3), 740–751.

    Article  PubMed  Google Scholar 

  • Bressler, D.W., Denison, R.N., & Silver, M.A. (2013). The constitution of visual consciousness: lessons from binocular rivalry 90, 253.

  • Brincat, S.L., & Connor, C.E. (2006). Dynamic shape synthesis in posterior inferotemporal cortex. Neuron, 49(1), 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, T.A., & He, S. (2004). Competing global representations fail to initiate binocular rivalry. Neuron, 43, 970–914.

    Article  Google Scholar 

  • Curtu, R., Shpiro, A., Rubin, N., & Rinzel, J. (2008). Mechanisms for frequency control in neuronal competition models. SIAM J Appl Dyn Sys, 7, 609–649.

    Article  Google Scholar 

  • Dayan, P. (1998). A hierarchical model of binocular rivalry. Neural Computation, 10, 1119–1135.

    Article  CAS  PubMed  Google Scholar 

  • Diekman, C.O., Golubitsky, M., & McMillen, T. (2012). Reduction and dynamics of a generalized rivalry network with two learned patterns. SIAM J Appl Dyn Sys, 11, 1270–1309.

    Article  Google Scholar 

  • Diekman, C.O., Golubitsky, M., & Wang, Y. (2013). Derived patterns in binocular rivalry networks. Journal of Mathematical Neuroscience,3(6).

  • van Ee, R., Noest, A.J., Brascamp, J.W., & van den Berg, A.V. (2006). Attentional control over either of the two competing percepts of ambiguous stimuli revealed by a two-parameter analysis: Means do notmake the difference. Vision Research, 46, 3129– 3141.

    Article  PubMed  Google Scholar 

  • Faisal, A.A., Selen, L.P.J., & Wolpert, D.M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferster, D., & Miller, K.D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23(1), 441–471.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, A.W. (2005). Multistage model for binocular rivalry. Journal of Neurophysiology, 94, 4412–4420.

    Article  PubMed  Google Scholar 

  • Gilbert, C.D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54(5), 677–696.

    Article  CAS  PubMed  Google Scholar 

  • Golubitsky, M., Zhao, Y., Wang, Y., & Lu ZL. (2019). The symmetry of generalized rivalry network models determines patterns of interocular grouping in four-location binocular rivalry. Journal of Neurophysiology.

  • Häusser, M, & Roth, A. (1997). Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. The Journal of Neuroscience, 17(20), 7606–7625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes, J.D., & Rees, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. Current Biology, 15(14), 1301–7.

    Article  CAS  PubMed  Google Scholar 

  • Hollins, M., & Hudnell, K. (1980). Adaptation of the binocular rivalry mechanism. Investigative Ophthalmology & Visual Science, 19(9), 1117–1120.

    CAS  Google Scholar 

  • Huguet, G., Rinzel, J., & Hupé, J M. (2014). Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice. Journal of Vision, 14(3).

  • Hupe, J.M., & Rubin, N. (2004). The oblique plaid effect. Vision Research, 44(5), 489–500.

    Article  PubMed  Google Scholar 

  • Jacot-Guillarmod, A., Wang, Y., Pedroza, C., Ogmen, H., Kilpatrick, Z., & Josić, K. (2017). Extending levelt’s propositions to perceptual multistability involving interocular grouping. Vision research, 133, 37–46.

    Article  PubMed  Google Scholar 

  • Kalarickal, G.J., & Marshall, J.A. (2000). Neural model of temporal and stochastic properties of binocular rivalry. Neurocomputing, 32, 843–853.

    Article  Google Scholar 

  • Kang, M.S., & Blake, R. (2010). What causes alternations in dominance during binocular rivalry? Atten Percept Psychophys, 72(1), 179–86. https://doi.org/10.3758/APP.72.1.179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick, Z.P. (2013). Short term synaptic depression improves information transfer in perceptual multistability. Frontiers in Computational Neuroscience, 7(85).

  • Kim, C.Y., & Blake, R. (2007). Illusory color promotes interocular grouping during binocular rivalry. Psychonomic Bulletin & Review, 14(2), 356–362.

    Article  Google Scholar 

  • Klink, P.C., van Ee, R., Nijs, M.M., Brouwer, G.J., Noest, A.J., & van Wezel, R.J.A. (2008). Early interacions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 8(16), 1–18.

    Article  PubMed  Google Scholar 

  • Klink, P.C., Brascamp, J.W., Blake, R., & Wezel, R.J.A.V. (2010). Experience-driven plasticity in binocular vision. Current Biology, 20.

  • Kohler, W. (2015). The task of Gestalt psychology. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Kovacs, I., Papathomas, T.V., Yang, M., & Feher, A. (1996). When the brain changes its mind: Interocular grouping during binocular rivalry. PNAS, 93, 15508–15511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lago-Fernandez, L.F., & Deco, G. (2002). A model of binocular rivalry based on competition in it. Neurocomputing, 44-46, 503–507.

    Article  Google Scholar 

  • Laing, C., & Chow, C.C. (2002). A spiking neuron model for binocular rivalry. J Comput Neurosci, 12, 39–53.

    Article  PubMed  Google Scholar 

  • Lamme, V.A., & Roelfsema, P.R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579.

    Article  CAS  PubMed  Google Scholar 

  • Lankheet, M.J.M. (2006). Unraveling adaptation and mutual inhibition in perceptual rivalry. Journal of Vision, 6, 304–310. https://doi.org/10.1167/6.4.1.

    Article  PubMed  Google Scholar 

  • Lee, S.H., & Blake, R. (2002). V1 activity is reduced during binocular rivalry. Journal of Vision, 2(9), 4.

    Article  Google Scholar 

  • Lehky, S.R. (1988). An astable multivibrator model of binocular rivalry. Perception, 17, 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Leopold, D., & Logothetis, N.K. (1999). Multistable phenomena: changing views in perception. Trends in Cognitive Sciences, 3, 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Leopold, D.A., & Logothetis, N.K. (1996). Activity changes in early visual cortex refect monkeys’ percepts during binocular rivalry. Nature, 379, 549–553.

    Article  CAS  PubMed  Google Scholar 

  • Levelt, W.J.M. (1965). On binocular rivalry. PhD thesis, Institute for Perception RVO-TNO Soeterberg (Netherlands).

  • Li, H.H., Rankin, J., Rinzel, J., Carrasco, M., & Heeger, D.J. (2017). Attention model of binocular rivalry. PNAS, 114(30).

  • Logothetis, N.K., & Schall, J.D. (1989). Neuronal correlates of subjective visual perception. Science, 245 (4919), 761–763.

    Article  CAS  PubMed  Google Scholar 

  • Lumer, E.D. (1998). A neural model of binocular intergration and rivalry based on the coordination of action-potential timing in primary visual cortex. Cerebral Cortex, 8, 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka, K. (1984). The dynamic model of binocular rivalry. Biological Cybernetics, 49, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.

    Article  PubMed  Google Scholar 

  • Moreno-Bote, R., Shapiro, A., Rinzel, J., & Rubin, N. (2010). Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance. Journal of Vision, 10(11), 1–18.

    Article  PubMed  Google Scholar 

  • Noest, A.J., van Ee, R., Nijs, M.M., & van Wezel, R.J.A. (2007). Percept-choice sequences driven by interrupted ambiguous stimuli: a low-levl neural model. Journal of Vision, 7(8), 1–14.

    Article  Google Scholar 

  • Pearson, J., Tadin, D., & Blake, R. (2007). The effects of transcranial maganetic stimulation on visual rivalry. Journal of Vision, 7(7), 1–11.

    Article  PubMed  Google Scholar 

  • Platonov, A., & Goossens, J. (2013). Influence of contrast and coherence on the temporal dynamics of binocular motion rivalry. PloS One, 8(8), e71931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polonsky, A., Blake, R., Braun, J., & Heeger, D. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3, 1153–1159.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran, V.S., Rao, V.M., Sriram, S., & Vidyasagar, T.R. (1973). The role of colour perception and “pattern” recognition in stereopsis. Vision Research, 13, 505–509.

    Article  CAS  PubMed  Google Scholar 

  • Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K.D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  • Ringach, D.L., Hawken, M.J., Shapley, R., & et al. (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387(6630), 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema, P.R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203–227.

    Article  CAS  PubMed  Google Scholar 

  • Roumani, D., & Moutoussis, K. (2012). Binocular rivalry alternations and their relation to visual adaptation. Frontiers in Human Neuroscience, 6, 35–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Said, C.P., & Heeger, D.J. (2013). A model of binocular rivalry and cross-orientation suppression. Plos Computational Biology, 9, e1002991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salinas, E., & Abbott, L. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences, 93(21), 11956–11961.

    Article  CAS  Google Scholar 

  • Seely, J., & Chow, C.C. (2011). The role of mutual inhibition in binocular rivalry. Journal of Neurophysiology, 106, 2136–2150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheinberg, D.L., & Logothetis, N.K. (1997). The role of temporal cortical areas in perceptual organization. Proceedings of the National Academy of Sciences, 94(7), 3408–3413.

    Article  CAS  Google Scholar 

  • Shiraishi, S. (1977). A test of Levelt’s model on binocular rivalry. Japanese Psychological Research, 19(3), 129–135.

    Article  Google Scholar 

  • Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.

    Article  PubMed  Google Scholar 

  • Sincich, L.C., & Horton, J.C. (2005). The circuitry of v1 and v2: integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–326.

    Article  CAS  PubMed  Google Scholar 

  • Sterzer, P., Kleinschmit, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7).

  • Stettler, D.D., Das, A., Bennett, J., & Gilbert, C.D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron, 36(4), 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Stollenwerk, L., & Bode, M. (2003). Lateral neural model of binocular rivalry. Neural Computation, 15, 2863–2882.

    Article  PubMed  Google Scholar 

  • Suzuki, S., & Grabowecky, M. (2002). Evidence for perceptual “trapping” and adaptation in multistable binocular rivalry. Neuron, 36, 143–157.

    Article  CAS  PubMed  Google Scholar 

  • Tong, F. (2001). Competing theories of binocular rivalry. Brain and Mind, 2, 55083.

    Article  Google Scholar 

  • Tong, F., & et al. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21(753–759).

  • Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10,(11).

  • Wade, N.J., & Weert, C.M.M.D. (1986). Aftereffects in binocular rivalry. Perception, 15(4), 419–434.

    Article  CAS  PubMed  Google Scholar 

  • Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M., & von der Heydt, R. (2012). A century of gestalt psychology in visual perception: I. perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheatstone, C. (1838). Contributions to the physiology of vision. Part I. On some remarkable, and hitherto unobserved, phenomena of binocular vision. London and Edinburgh Philosophical Magazine and Journal of Science, 3, 241–267.

    Article  Google Scholar 

  • Wilson, H.R. (2003). Computational evidence for a rivalry hierarchy in vision. PNAS, 100, 14499–14503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, H.R. (2007). Minimal physiological conditions for binocular rivalry and rivalry memory. Vision Res, 47, 2741–2750.

    Article  PubMed  Google Scholar 

  • Wilson, H.R. (2009). Requirements for conscious visual processing, Cambridge University Press, chap In Cortical Mechanisms of Vision, pp 399–417.

Download references

Acknowledgements

We thank Martin Golubitsky for helpful suggestions. Funding was provided by DHS-2014-ST-062-000057, NSF HRD-1800406 and NSF CNS-1831980 (YW); NSF DMS-1615737, NSF DMS-1853630 (ZPK); NIH-1R01MH115557 (KJ and ZPK); DBI-1707400 (KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiao Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Brent Doiron

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z.P. Kilpatrick, K Josić contributed equally to this work.

Appendices

Appendix A: Choice of parameter values

We had to set a number of parameters in our model to capture the perceptual alternations observed experimentally. To do so we first let α = β, and chose a set of parameter values so that the corresponding deterministic model had a periodic solution with E1(t) = E2(t) and E3(t) = E4(t). i.e. the periodic solution associated with the alternation of single-eye percepts. We then used XPPAUT to obtain the bifurcation diagram shown in Fig. 10, where the green curve in (A) is a branch of stable periodic solutions and the green curve in (B) is the corresponding periods of the periodic solutions in (A). We choose the values of input strength Ii all to be equal and in the interval (0.8, 1.25) so that the model displayed decreases in dominance duration with increasing input strength I .

Fig. 10
figure 10

The hierarchical model captures conventional bistable binocular rivalry. a The bifurcation diagram with bifurcation parameter I when α = β = 0.3, and other parameters as in Fig. 3 shows the emergence and disappearance of periodic solutions. The green curves represent the branches of a stable periodic solution, the solid red curve represents a stable equilibrium, and the dashed red curve represents unstable equilibria; b The period of the corresponding stable periodic solution peaks around I = 0.6

Changing the values of α and β changes the bifurcation diagram. However, by continuity, as long as parameter values are not far from those we used to obtain the bifurcation diagram, the dynamics of the system remains similar. In many of our simulations, we fixed the input values I to 1.2, and other values at α = 0.3, w = 1,g = 0.5,ci = 1,ν = γ = 0.45,κ = 0.5. τ = 10ms, τh = τa = 1000ms, δ = 0.03. The parameter values of w, g,ν,γ and κ roughly follow the values used in the literature (Seely and Chow 2011; Wilson 2003). We then numerically found the same qualitative results hold for I ∈ [1, 1.25].

Appendix B: Simulation procedure

To obtain the results shown in the figure, for each given parameter set we ran 100 realizations of the model for 300 seconds each and computed the dominance durations, predominance, and visit ratio for each percept. We pooled all dominance durations of one class of percepts (e.g., single-eye percepts or grouped percepts) and computed its average and standard deviation across occurrences and realizations.

Appendix C: Simulation results with feedback from higher to lower level

Our hierarchical model with sufficiently weak feedback from the higher level to the lower level can also capture the three main observations reported by Jacot-Guillarmod et al. (2017) with the minor difference that the average dominance duration increases (Fig. 9). Increasing the adaptation rate κ in the top level had little or no effect on the dominance duration of percepts (Fig. 11a shows single-eye percepts, but results for grouped percepts were similar) over a large interval (0, 0.8). The main effect of top down excitatory feedback from a percept we observed was to increase that percept’s dominance duration (Fig. 11b).

Fig. 11
figure 11

Adaptation rate, κ, at the higher level of the hieararchy, and top-down influence. a The adaptation rate had little or no effect on the dominance duration of percepts. Parameter values as in Fig. 3. b Example of top-down influence from only one percept, here P3 (a1 = a2 = b2 = 0 and b1 = 0.5). Top down input from one percept increased its dominance duration. Parameters not listed were as in Fig. 3. c Part of Fig. 4C from Seely and Chow (2011): Proposition IV did not hold when I2 ∈ (0.85,1) since the increasing rate of the stronger percepts did not exceed the decreasing rate of the weak percept.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kilpatrick, Z.P. & Josić, K. A hierarchical model of perceptual multistability involving interocular grouping. J Comput Neurosci 48, 177–192 (2020). https://doi.org/10.1007/s10827-020-00743-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00743-8

Keywords

Navigation