Skip to main content
Log in

Evaluation of DNA Methylation Changes by CRED–RA Analysis Following Prednisone Treatment of Endophyte, Fusarium oxysporum

  • Short communications
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytes that represent a sub-set of plant resident microbes are a reservoir of bioactive metabolites. Many of the secondary metabolite biosynthetic gene clusters of endophytes are silent under axenic culture conditions. Epigenetic reprogramming of such cryptic pathways is possible by use of small molecule modulators like prednisone. Methylation changes induced by prednisone, a hypomethylating epigenetic modulator were studied in endophytic Fusarium oxysporum. CRED–RA analysis following exposure to non-cytotoxic dose (300 µM) revealed prednisone as effective in inducing non-methylation and semi-methylation pattern while inhibiting full-methylation of the genome. Effectiveness of prednisone as a DNA methyl transferase inhibitor can be explored in future to study alterations in secondary metabolite gene expression profile in endophytic F. oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Koga AY, Beltrame FL, Pereira AV (2016) Several aspects of Zingiber zerumbet: a review. Revista Brasileira de Farmacognosia 26:385–391

    Article  CAS  Google Scholar 

  2. Keerthi D, Aswati Nair R, Prasath D (2016) Molecular phylogenetics and anti-Pythium activity of endophytes from rhizomes of wild ginger congener, Zingiber zerumbet Smith. World J Microbiol Biotechnol 32:41

    Article  CAS  Google Scholar 

  3. Afek U, Orenstein J, Carmeli S, Rodov V, Joseph MB (1999) Umbelliferone, a phytoalexin associated with resistance of immature Marsh grapefruit to Penicillium digitatum. Phytochemistry 50:1129–1132

    Article  CAS  Google Scholar 

  4. Bai X-N, Liang W, Cheng J, Ma L-Q, Liu Y-B, Shi G-L, Wang Y-N, Gu J-C (2012) Inhibitory effect and antifungal mechanism of umbelliferone on plant pathogenic fungi. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering; advances in intelligent and soft computing, vol 134. Springer, Heidelberg

    Google Scholar 

  5. Taechowisan T, Chuaychot N, Chanaphat S (2008) Biological activity of chemical constituents isolated from Streptomyces sp. Tc052, an endophyte in Alpinia galanga. Int J Pharmacol 4:95–101

    Article  CAS  Google Scholar 

  6. Huang Z, Yang J, Cai X, She Z, Lin Y (2012) A new furnaocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat Prod Res 26:1291–1295

    Article  CAS  Google Scholar 

  7. Chung YM, Wei CK, Chuang DW, El-Shazly M, Hsieh CT, Asai T, Oshima Y, Hsieh TJ, Hwang TL, Wu YC, Chang FR (2013) An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii. Bioorganic Med Chem 21:3866–3872

    Article  CAS  Google Scholar 

  8. Cichewicz RH (2010) Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27:11–22

    Article  CAS  Google Scholar 

  9. Bok JW, Noordermeer D, Kale SP, Keller NP (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61:1636–1645

    Article  CAS  Google Scholar 

  10. Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213

    Article  CAS  Google Scholar 

  11. Menendez VZ, Bonilla MP, Victoria IP, Martin J, Munoz F, Reyes F, Tormo JR, Genilloud O (2016) Multicomponent analysis of the differential induction of secondary metabolite profiles in fungal endophytes. Molecules 21:234

    Article  Google Scholar 

  12. Wu G, Zhou H, Zhang P, Wang X, Li W, Zhang W, Liu X, Liu HW, Keller NP, An Z, Yin WB (2016) Polyketide production of Pestaloficiols and Macrodiolide Ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett 18:1832–1835

    Article  CAS  Google Scholar 

  13. Schumacher JD (2014) Epigenetic modification and analysis of natural product gene clusters to enhance drug discovery from bacteria. Open Access Master’s Theses, pp 1–309

  14. Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C (2016) Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 8:98

    Article  Google Scholar 

  15. Rein T, DePamphilis ML, Zorbas H (1998) Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 26:2255–2264

    Article  CAS  Google Scholar 

  16. Saluz H, Jost JP (1993) Major techniques to study DNA methylation. In: Jost JP, Saluz H (eds) DNA methylation: molecular biology and biological significance. Birkhauser Verlag, Switzerland, pp 11–26

    Chapter  Google Scholar 

  17. Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. BioEssays 16:431–436

    Article  CAS  Google Scholar 

  18. Altunkaynak E, Büyük I, Aydin SS, Aras S (2016) New insight into evaluation of DNA methylation levels with CRED–RA technique in the genome of Lycopersicum esculentum subjected to NaCl and PEG. Biol Divers Conserv 9:163–171

    Google Scholar 

  19. Bolukbasi E, Aras ES (2016) Determination of DNA methylation levels with CRED–RA technique in the genome of sunflower seedlings (Helianthus annuus L.) subjected to zinc stress. Int J Environ Agric Biotechnol 1:438–444

    Article  Google Scholar 

  20. Cai Q, Guy CL, Moore GA (1996) Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of citrus. Genome 39:235–242

    Article  CAS  Google Scholar 

  21. Bird AP, Southern EM (1978) Use of restriction enzymes to study eukaryotic DNA methylation: the methylation pattern in ribosomal DNA from Xenopus laevis. J Mol Biol 118:27–47

    Article  CAS  Google Scholar 

  22. Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7:e40203

    Article  CAS  Google Scholar 

  23. Li W, Wang Y, Zhu J, Wang Z, Tang G, Huang B (2017) Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entemopathogenic fungus Metarhizium rebertsii. Fungal Biol 121:293–303

    Article  CAS  Google Scholar 

  24. Jeon J, Choi J, Lee GW, Park SY, Huh A, Dean RA, Lee YH (2015) Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci Rep 5:8567

    Article  CAS  Google Scholar 

  25. Liu SY, Lin JQ, Wu HL, Wang CC, Huang SJ, Luo YF, Sun JH, Zhou JX, Yan SJ, He JG, Wang J, He ZM (2012) Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation. PLoS One 7:e30349

    Article  CAS  Google Scholar 

  26. Zhu Y, Xu J, Sun C, Zhou S, Xu H, Nelson DR, Qian J, Song J, Luo H, Xiang L, Li Y, Xu Z, Ji A, Wang L, Lu S, Hayward A et al (2015) Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense. Sci Rep 5:11087

    Article  CAS  Google Scholar 

  27. So KK, Ko YH, Chun J, Bal J, Jeon J, Kim JM, Choi J, Lee YH, Huh JH, Kim DH (2018) Global DNA methylation in the chestnut blight fungus Cryphonectria parasitica and genome-wide changes in DNA methylation accompanied with sectorization. Front Plant Sci 9:103

    Article  Google Scholar 

  28. Montanini B, Chen PY, Morselli M, Jaroszewicz A, Lopez D, Martin F, Ottonello S, Pellegrini M (2014) Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol 15:411

    Article  Google Scholar 

Download references

Acknowledgements

HK acknowledges the Grant received from UGC (University Grants Commission, Govt. of India) for the Junior Research Fellowship received (No. 20/12/2015(ii)EU-V). HK and ARN are also thankful to Department of Science and Technology (DST) for the research Grant received (EMR/2016/002229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aswati Nair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshitha, K., Nair, R.A. Evaluation of DNA Methylation Changes by CRED–RA Analysis Following Prednisone Treatment of Endophyte, Fusarium oxysporum. Indian J Microbiol 60, 254–258 (2020). https://doi.org/10.1007/s12088-020-00857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00857-8

Keywords

Navigation