Skip to main content

Advertisement

Log in

16S rRNA Gene-Based Analysis Reveals the Effects of Gestational Diabetes on the Gut Microbiota of Mice During Pregnancy

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Hyperglycemia is one of the metabolic characteristics of gestational diabetes mellitus (GDM). Considering that GDM is able to cause changes in the gut bacterial community and function in the mother’s intestine compared with healthy pregnant women, we aimed to clarify the correlation between hyperglycemia and gut microbiota in a GDM mouse model. Mice were divided into four groups: CE0, GDME0, CE18, and GDME18. C and GDM represent the control (C) and GDM groups, while E0 and E18 represent early or late trimesters of embryo day 0 or 18, respectively. GDM mouse models were created by injecting streptozocin on embryo day 0. The gut microbiota was characterized using the Illumina MiSeq platform targeting the V3–4 region of the 16S rRNA. Operational taxonomic unit analysis revealed a significant difference between CE18 and CE0, in which Akkermansia and Prevotellaceae were more abundant in the early trimester group, CE0. Moreover, the Clostridiales_vadinBB60 group was more abundant, while Parasutterella was much lower in GDME18 than in CE18. The gut microbiota community structure correlated with the GDM state, and LEfSe and molecular ecological network analysis further confirmed these diversities. Our research shows that changes in the community structure of the gut microbiota from the early to late trimester correlate with the GDM state. Changes in the abundance of the probiotic bacteria Akkermansia, Prevotellaceae, and Parasutterella may be involved in the GDM state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

Further data of the research can obtain by contacting the corresponding author.

References

  1. Group NHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009) The NIH human microbiome project. Genome Res 19:2317–2323. https://doi.org/10.1101/gr.096651.109

    Article  CAS  Google Scholar 

  2. Gordon JI (2012) Honor thy gut symbionts redux. Science 336:1251–1253. https://doi.org/10.1126/science.1224686

    Article  PubMed  CAS  Google Scholar 

  3. Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R (2019) Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00808-y

    Article  PubMed  Google Scholar 

  4. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450

    Article  PubMed  CAS  Google Scholar 

  5. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8:e71108. https://doi.org/10.1371/journal.pone.0071108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Meta HITc, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506

    Article  PubMed  CAS  Google Scholar 

  7. Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman WA, de Vos WM, Rensen SS (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring) 21:E607–E615. https://doi.org/10.1002/oby.20466

    Article  CAS  Google Scholar 

  8. Jovanovic L, Liang Y, Weng W, Hamilton M, Chen L, Wintfeld N (2015) Trends in the incidence of diabetes, its clinical sequelae, and associated costs in pregnancy. Diabetes Metab Res Rev 31:707–716. https://doi.org/10.1002/dmrr.2656

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang C, Rawal S, Chong YS (2016) Risk factors for gestational diabetes: is prevention possible? Diabetologia 59:1385–1390. https://doi.org/10.1007/s00125-016-3979-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mahany EB, Han X, Borges BC, da Silveira Cruz-Machado S, Allen SJ, Garcia-Galiano D, Hoenerhoff MJ, Bellefontaine NH, Elias CF (2018) Obesity and high-fat diet induce distinct changes in placental gene expression and pregnancy outcome. Endocrinology 159:1718–1733. https://doi.org/10.1210/en.2017-03053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480. https://doi.org/10.1016/j.cell.2012.07.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Crusell MKW, Hansen TH, Nielsen T, Allin KH, Ruhlemann MC, Damm P, Vestergaard H, Rorbye C, Jorgensen NR, Christiansen OB, Heinsen FA, Franke A, Hansen T, Lauenborg J, Pedersen O (2018) Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6:89. https://doi.org/10.1186/s40168-018-0472-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wallace JG, Bellissimo CJ, Yeo E, Fei Xia Y, Petrik JJ, Surette MG, Bowdish DME, Sloboda DM (2019) Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Sci Rep 9:17621. https://doi.org/10.1038/s41598-019-54098-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gohir W, Kennedy KM, Wallace JG, Saoi M, Bellissimo CJ, Britz-McKibbin P, Petrik JJ, Surette MG, Sloboda DM (2019) High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J Physiol 597:3029–3051. https://doi.org/10.1113/JP277353

    Article  PubMed  CAS  Google Scholar 

  15. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  PubMed  CAS  Google Scholar 

  16. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  PubMed  CAS  Google Scholar 

  17. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  PubMed  CAS  Google Scholar 

  18. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Langille MG, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  Google Scholar 

  21. Zhao S, Liu W, Wang J, Shi J, Sun Y, Wang W, Ning G, Liu R, Hong J (2017) Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 58:1–14. https://doi.org/10.1530/JME-16-0054

    Article  PubMed  Google Scholar 

  22. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Consortium MI-O, Dumas ME, Rizkalla SW, Dore J, Cani PD, Clement K (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436. https://doi.org/10.1136/gutjnl-2014-308778

    Article  PubMed  CAS  Google Scholar 

  23. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyoty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6:e25792. https://doi.org/10.1371/journal.pone.0025792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, Marti-Romero M, Lopez RM, Florido J, Campoy C, Sanz Y (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92. https://doi.org/10.1017/S0007114510000176

    Article  PubMed  CAS  Google Scholar 

  25. Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88:894–899. https://doi.org/10.1093/ajcn/88.4.894

    Article  PubMed  CAS  Google Scholar 

  26. Ju T, Kong JY, Stothard P, Willing BP (2019) Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J. https://doi.org/10.1038/s41396-019-0364-5

    Article  PubMed  Google Scholar 

  27. Kim YS, Kim J, Park SJ (2015) High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33:1–7. https://doi.org/10.1016/j.anaerobe.2015.01.004

    Article  PubMed  CAS  Google Scholar 

  28. Su M, Nie Y, Shao R, Duan S, Jiang Y, Wang M, Xing Z, Sun Q, Liu X, Xu W (2018) Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE 13:e0205695. https://doi.org/10.1371/journal.pone.0205695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6:1848–1857. https://doi.org/10.1038/ismej.2012.27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Danneskiold-Samsoe NB, Andersen D, Radulescu ID, Normann-Hansen A, Brejnrod A, Kragh M, Madsen T, Nielsen C, Josefsen K, Frette X, Fjaere E, Madsen L, Hellgren LI, Brix S, Kristiansen K (2017) A safflower oil based high-fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation. Mol Nutr Food Res https://doi.org/10.1002/mnfr.201600528

    Article  PubMed  Google Scholar 

  31. Liu J, Yang H, Yin Z, Jiang X, Zhong H, Qiu D, Zhu F, Li R (2017) Remodeling of the gut microbiota and structural shifts in Preeclampsia patients in South China. Eur J Clin Microbiol Infect Dis 36:713–719. https://doi.org/10.1007/s10096-016-2853-z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81501284, 81770759, 81960282), Guangxi Natural Science Foundation Program (2017GXNSFBA198084, 2016GXNSFBA380193), Youth Science Foundation of Guangxi Medical University (GXMUYSF201603).

Author information

Authors and Affiliations

Authors

Contributions

YJ conceived and designed the experiments. YJ and YL established the mouse model of GDM. ZY, PL and YC performed bioinformatic analysis experiments. ZY and YJ wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yonghua Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal procedures were approved and performed under the guidance of the Institutional Animal Care and Use Committee of Guangxi Medical University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Long, Y., Ye, J. et al. 16S rRNA Gene-Based Analysis Reveals the Effects of Gestational Diabetes on the Gut Microbiota of Mice During Pregnancy. Indian J Microbiol 60, 239–245 (2020). https://doi.org/10.1007/s12088-020-00862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00862-x

Keywords

Navigation