Skip to main content

Advertisement

Log in

A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pesticides are the chemicals used to prevent plant diseases, weeds, pests and to enhance the quality of the food products. The uniqueness of their chemical structure, and/or their interactions with the environment characterize the nature of pesticides. In most scenarios, the end users such as farmers and consumers, who know the serious effects of pesticides cannot translate this awareness into their practice. The mobility, bioavailability of pesticides in soils (atmosphere, water bodies) is based upon their absorption and desorption mechanisms from soil particles. Pesticides have harmful effects in the soil ecosystem, and mankind (which affects biological molecules, tissues, and organs resulting in acute or chronic disorders). It affects humans of all ages including prenatal. These pollutants, when released into the water bodies affects the aquatic systems. The water molecules in the river are affected by the accumulation of these toxic contaminants with its alkaline pH and heavy metals which could adversely affect the health of flora and fauna. This article discusses the scientific literature on various remediation technologies available for the safer use of pesticides. The limitations and benefits of chemically polluted soil using microorganisms and other biological methods have been discussed. However, future development measures are still needed to ensure full implementation of these methods to save the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260. https://doi.org/10.1016/j.agee.2007.07.011

    Article  CAS  Google Scholar 

  2. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. https://doi.org/10.1016/j.taap.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  3. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li X, Wang W, Wang J, Cao X, Wang X, Liu J, Liu X, Xu X, Jiang X (2008) Contamination of soils with organochlorine pesticides in urban parks in Beijing, China. Chemosphere 70:1660–1668. https://doi.org/10.1016/j.chemosphere.2007.07.078

    Article  CAS  PubMed  Google Scholar 

  5. Yadav IS, Devi NL (2017) Pesticides classification and its impact on human and environment. In: Kumar A, Singhal JC, Techato K, Molina LT, Singh N, Kumar P, Kumar P, Chandra R, Caprio S, Upadhye S, Yonemura S, Rao SY, Zhang TC, Sharma UC, Abrol YP (eds) Environmental Science and Engineering, vol 6. Studium Press LLC, USA, pp 140–158

    Google Scholar 

  6. Kumar PS, Carolin FC, Varjani SJ (2018) Pesticides Bioremediation. In: Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (eds) Bioremediation: applications for environmental protection and management. Springer Nature, Singapore, pp 197–222. https://doi.org/10.1007/978-981-10-7485-1_10

    Chapter  Google Scholar 

  7. The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. https://apps.who.int/iris/bitstream/handle/10665/44271/9789241547963_eng.pdf?sequence=1&isAllowed=y. Accessed 04 Dec 2019

  8. Varjani SJ, Gnansounou E, Gurunathan B, Pant D, Zakaria ZA (eds) (2018) Waste bioremediation. Springer Nature, Singapore, pp 1–384

    Book  Google Scholar 

  9. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354. https://doi.org/10.1016/j.enzmictec.2004.05.006

    Article  CAS  Google Scholar 

  10. Nigam SK, Karnik AB, Chattopadhyay P, Lakkad BC, Venkaiah K, Kashyap SK (1993) Clinical and biochemical investigations to evolve early diagnosis in workers involved in the manufacture of hexachlorocyclohexane. Int Arch Occup Environ Health 65:S193–S196. https://doi.org/10.1007/BF00381339

    Article  CAS  PubMed  Google Scholar 

  11. Korres NE (2018) Herbicide effects on humans: exposure, short and long-term effects and occupational hygiene. In: Weed control: sustainability, hazards, and risks in cropping systems worldwide. CRC Press, Taylor Francis Group, Boca Raton, FL, p 14

    Chapter  Google Scholar 

  12. Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA, Hostetter TH (2005) Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol 16:180–188. https://doi.org/10.1681/ASN.2004070539

    Article  PubMed  Google Scholar 

  13. Schwarzenbach R, Gschwend P, Imboden D (eds) (2016) Environmental organic chemistry, 3rd edn. Wiley, New York. ISBN 978-1-118-76723-8

    Google Scholar 

  14. Mascarelli A (2013) Growing up with pesticides. Science 341:740–741. https://doi.org/10.1126/science.341.6147.740

    Article  CAS  PubMed  Google Scholar 

  15. Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165(1–3):1–12. https://doi.org/10.1016/j.jhazmat.2008.10.061

    Article  CAS  PubMed  Google Scholar 

  16. Ram Sharma D (2015) Use of pesticides and its residue on vegetable crops in Nepal. J Agric Environ 16:33–42. https://doi.org/10.3126/aej.v16i0.19838

    Article  Google Scholar 

  17. Chakraborty P, Zhang G, Li J, Sivakumar A, Jones KC (2015) Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air-soil exchange. Environ Pollut 204:74–80. https://doi.org/10.1016/j.envpol.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  18. Barron MG, Ashurova ZJ, Kukaniev MA, Avloev HK, Khaidarov KK, Jamshedov JN, Rahmatullova OS, Atolikshoeva SS, Mamadshova SS, Manzenyuk O (2017) Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan. Environ Pollut 224:494–502. https://doi.org/10.1016/j.envpol.2017.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thapinta A, Hudak PF (2000) Pesticide use and residual occurrence in Thailand. Environ Monit Assess 60:103–114. https://doi.org/10.1023/A:1006156313253

    Article  CAS  Google Scholar 

  20. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137. https://doi.org/10.1016/j.scitotenv.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  21. Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20. https://doi.org/10.1016/j.copbio.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  22. Cycoń M, Wójcik M, Borymski S, Piotrowska-Seget Z (2013) Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis. Appl Soil Ecol 66:8–18. https://doi.org/10.1016/j.apsoil.2013.01.014

    Article  Google Scholar 

  23. Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671. https://doi.org/10.1111/j.1462-2920.2009.01891.x

    Article  CAS  PubMed  Google Scholar 

  24. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisp Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  25. Debost-Legrand A, Warembourg C, Massart C, Chevrier C, Bonvallot N, Monfort C, Rouget F, Bonnet F, Cordier S (2016) Prenatal exposure to persistent organic pollutants and organophosphate pesticides, and markers of glucose metabolism at birth. Environ Res 146:207–217. https://doi.org/10.1016/j.envres.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  26. Meenakshi, Sharon, P, Bhawana M, Anita S, Gothecha VK (2012) A short review on how pesticides affect human health. Int J Ayurvedic Herb Med 2(5):935–946. https://doi.org/10.31142/ijahm

    Article  Google Scholar 

  27. Matthews G (ed) (2015) Pesticides: health, safety and the environment, 2nd edn. Wiley, New York. ISBN 978-1-118-97602-9

    Google Scholar 

  28. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  29. Kokkinaki A, Kokkinakis M, Kavvalakis MP, Tzatzarakis MN, Alegakis AK, Maravgakis G, Babatsikou F, Fragkiadakis GA, Tsatsakis AM (2014) Biomonitoring of dialkylphosphate metabolites (DAPs) in urine and hair samples of sprayers and rural residents of Crete, Greece. Environ Res 134:181–187. https://doi.org/10.1016/j.envres.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  30. Fareed M, Kesavachandran CN, Pathak MK, Bihari V, Kuddus M, Srivastava AK (2012) Visual disturbances with cholinesterase depletion due to exposure of agricultural pesticides among farm workers. Toxicol Environ Chem 94:1601–1609. https://doi.org/10.1080/02772248.2012.718780

    Article  CAS  Google Scholar 

  31. Amaral AFS (2014) Pesticides and asthma: challenges for epidemiology. Front Public Health 2:6. https://doi.org/10.3389/fpubh.2014.00006

    Article  PubMed  PubMed Central  Google Scholar 

  32. Singh NS, Sharma R, Parween T, Patanjali PK (2018) Pesticide contamination and human health risk factor. In: Oves M, Zain Khan M, Ismail MI (eds) Modern age environmental problems and their remediation. Springer, Cham, pp 49–68. https://doi.org/10.1007/978-3-319-64501-8_3

    Chapter  Google Scholar 

  33. Gallagher RP, MacArthur AC, Lee TK, Weber JP, Leblanc A, Mark Elwood J, Borugian M, Abanto Z, Spinelli JJ (2011) Plasma levels of polychlorinated biphenyls and risk of cutaneous malignant melanoma: a preliminary study. Int J Cancer 128:1872–1880. https://doi.org/10.1002/ijc.25503

    Article  CAS  PubMed  Google Scholar 

  34. Rivero J, Luzardo OP, Henríquez-Hernández LA, Machín RP, Pestano J, Zumbado M, Boada LD, Camacho M, Valerón PF (2015) In vitro evaluation of oestrogenic/androgenic activity of the serum organochlorine pesticide mixtures previously described in a breast cancer case-control study. Sci Total Environ 537:197–202. https://doi.org/10.1016/j.scitotenv.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  35. Parrón T, Requena M, Hernández AF, Alarcón R (2014) Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol Lett 230:157–165. https://doi.org/10.1016/j.toxlet.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  36. Martin FL, Martinez EZ, Stopper H, Garcia SB, Uyemura SA, Kannen V (2018) Increased exposure to pesticides and colon cancer: early evidence in Brazil. Chemosphere 209:623–631. https://doi.org/10.1016/j.chemosphere.2018.06.118

    Article  CAS  PubMed  Google Scholar 

  37. Asghar U, Malik MF, Javed A (2016) Pesticide exposure and human health: a review. J Ecosyst Ecogr 5:2. https://doi.org/10.4172/2157-7625.S5-005

    Article  Google Scholar 

  38. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032. https://doi.org/10.1182/blood-2011-01-293050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang M, Chen K, Yang F, Liu W (2014) Exposure to organochlorine pollutants and type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 9:e85556. https://doi.org/10.1371/journal.pone.0085556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moretto A, Colosio C (2013) The role of pesticide exposure in the genesis of Parkinson’s disease: epidemiological studies and experimental data. Toxicology 307:24–34. https://doi.org/10.1016/j.tox.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  41. Qi Z, Miller GW, Voit EO (2014) Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity. Toxicology 315:92–101. https://doi.org/10.1016/j.tox.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  42. Pezzoli G, Cereda E (2013) Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80:2035–2041. https://doi.org/10.1212/WNL.0b013e318294b3c8

    Article  CAS  PubMed  Google Scholar 

  43. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419. https://doi.org/10.3390/ijerph8051402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mariyono J (2008) Direct and indirect impacts of integrated pest management on pesticide use: a case of rice agriculture in Java, Indonesia. Pest Manag Sci 64:1069–1073. https://doi.org/10.1002/ps.1602

    Article  CAS  PubMed  Google Scholar 

  45. Sai MVS, Revati GD, Ramya R, Swaroop AM, Maheswari E, Kumar MM (2019) Knowledge and perception of farmers regarding pesticide usage in a rural farming village, Southern India. Indian J Occup Environ Med 23:32. https://doi.org/10.4103/ijoem.IJOEM_121_18

    Article  Google Scholar 

  46. Fargnoli M, Lombardi M, Puri D, Casorri L, Masciarelli E, Mandić-Rajčević S, Colosio C (2019) The safe use of pesticides: a risk assessment procedure for the enhancement of occupational health and safety (OHS) management. Int J Environ Res Public Health 16:310. https://doi.org/10.3390/ijerph16030310

    Article  PubMed Central  Google Scholar 

  47. Kwakye MO, Mengistie B, Ofosu-Anim J, Nuer ATK, Van den Brink PJ (2018) Pesticide registration, distribution and use practices in Ghana. Environ Dev Sustain. https://doi.org/10.1007/s10668-018-0154-7

    Article  Google Scholar 

  48. Reynolds JD (2018) International pesticide trade: is there any hope for the effective regulation of controlled substances? Florida State Univ J Land Use Environ Law 13(1):2

    Google Scholar 

  49. Berny P (2007) Pesticides and the intoxication of wild animals. J Vet Pharmacol Ther 30:93–100. https://doi.org/10.1111/j.1365-2885.2007.00836.x

    Article  CAS  PubMed  Google Scholar 

  50. Harris CA, Gaston CP (2004) Effects of refining predicted chronic dietary intakes of pesticide residues: a case study using glyphosate. Food Addit Contam 21:857–864. https://doi.org/10.1080/02652030412331282385

    Article  CAS  PubMed  Google Scholar 

  51. Gupta P, Rani R, Chandra A, Varjani SJ, Kumar V (2018) Effectiveness of plant growth-promoting Rhizobacteria in phytoremediation of chromium stressed soils. Springer, Singapore, pp 301–312. https://doi.org/10.1007/978-981-10-7413-4_16

    Book  Google Scholar 

  52. Macneale KH, Kiffney PM, Scholz NL (2010) Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front Ecol Environ 8:475–482. https://doi.org/10.1890/090142

    Article  Google Scholar 

  53. Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Hakeem K, Akhtar M, Abdullah S (eds) Plant, soil and microbes: volume 1: implications in crop science. Springer International Publishing, Cham, pp 253–269. https://doi.org/10.1007/978-3-319-27455-3_13

    Chapter  Google Scholar 

  54. Helfrich LA, Weigmann DL, Hipkins PA, Stinson ER (2009) Pesticides and aquatic animals: a guide to reducing impacts on aquatic systems. Virginia Cooperative Extension (VCE). https://vtechworks.lib.vt.edu/bitstream/handle/10919/48060/420-013_pdf.pdf?sequence=1. Accessed 20 Aug 2019

  55. Banerjee BD (1999) The influence of various factors on immune toxicity assessment of pesticide chemicals. Toxicol Lett 107:21–31. https://doi.org/10.1016/S0378-4274(99)00028-4

    Article  CAS  PubMed  Google Scholar 

  56. Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technol Environ Policy 13:241–268. https://doi.org/10.1007/s10098-010-0319-z

    Article  Google Scholar 

  57. Varjani S, Kumar G, Rene ER (2019) Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manage 232:505–513. https://doi.org/10.1016/j.jenvman.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  58. Gavrilescu M (2009) Emerging processes for soil and groundwater cleanup-potential benefits and risks. Environ Eng Manag 8:1293–1307

    Article  CAS  Google Scholar 

  59. Calugaru IL, Neculita CM, Genty T, Zagury GJ (2018) Metals and metalloids treatment in contaminated neutral effluents using modified materials. J Environ Manag 212:142–159. https://doi.org/10.1016/j.jenvman.2018.02.002

    Article  CAS  Google Scholar 

  60. Kulshreshtha S (2018) Mushroom biomass and spent mushroom substrate as adsorbent to remove pollutants. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal. Springer, Cham, pp 281–325. https://doi.org/10.1007/978-3-319-92162-4_9

    Chapter  Google Scholar 

  61. Ye M, Yang XL, Sun MM, Bian YR, Wang F, Gu CG, Wei HJ, Song Y, Wang L, Jin X, Jiang X (2013) Use of organic solvents to extract organochlorine pesticides (ocps) from aged contaminated soils. Pedosphere 23:10–19. https://doi.org/10.1016/S1002-0160(12)60075-7

    Article  CAS  Google Scholar 

  62. Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435. https://doi.org/10.1016/j.jhazmat.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  63. Odukkathil G, Vasudevan N (2015) Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. J Environ Sci Health B 50:81–89. https://doi.org/10.1080/03601234.2015.975596

    Article  CAS  PubMed  Google Scholar 

  64. Villa RD, Trovó AG, Nogueira RFP (2008) Environmental implications of soil remediation using the Fenton process. Chemosphere 71:43–50. https://doi.org/10.1016/j.chemosphere.2007.10.043

    Article  CAS  PubMed  Google Scholar 

  65. Ramos-Contreras C, Concha-Graña E, López-Mahía P, Molina-Pérez F, Muniategui-Lorenzo S (2019) Determination of atmospheric particle-bound polycyclic aromatic hydrocarbons using subcritical water extraction coupled with membrane microextraction. J Chromatogr A 1606:460381. https://doi.org/10.1016/j.chroma.2019.460381

    Article  CAS  PubMed  Google Scholar 

  66. Tummala CM, Tewari S (2018) Electro-kinetic remediation processes—a brief overview and selected applications. MOJ Civil Eng 4(1):00097. https://doi.org/10.15406/mojce.2018.04.00097

    Article  Google Scholar 

  67. Alvarez VM, Marques JM, Korenblum E, Seldin L (2011) Comparative bioremediation of crude oil-amended tropical soil microcosms by natural attenuation, bioaugmentation, or bioenrichment. Appl Environ Soil Sci 2011:1–10. https://doi.org/10.1155/2011/156320

    Article  CAS  Google Scholar 

  68. Zawierucha I, Malina G (2011) Bioremediation of contaminated soils: effects of bioaugmentation and biostimulation on enhancing biodegradation of oil hydrocarbons. In: Singh A, Parmar N, Kuhad R (eds) Bioaugmentation, biostimulation and biocontrol. Soil biology, vol 108. Springer, Berlin. https://doi.org/10.1007/978-3-642-19769-7_8

    Chapter  Google Scholar 

  69. Mahjoubi M, Cappello S, Souissi Y, Jaouani A, Cherif A (2018) Microbial bioremediation of petroleum hydrocarbon–contaminated marine environments. Recent Insights Pet Sci Eng. https://doi.org/10.5772/intechopen.72207

    Article  Google Scholar 

  70. Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  71. Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T, Khan QM (2012) Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater 237–238:110–115. https://doi.org/10.1016/j.jhazmat.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  72. Eevers N, White JC, Vangronsveld J, Weyens N (2017) Bio- and phytoremediation of pesticide-contaminated environments: a review. Adv Bot Res 83:277–318. https://doi.org/10.1016/bs.abr.2017.01.001

    Article  CAS  Google Scholar 

  73. Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154. https://doi.org/10.1016/j.envpol.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  74. Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38:227–268. https://doi.org/10.1080/10643380701413351

    Article  CAS  Google Scholar 

  75. Alekhya M, Divya N, Jyothirmai G, Reddy KR (2013) Secured landfills for disposal of municipal solid waste. Int J Eng Res Gen Sci 1:1–5. http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi=10.1.1.407.7629%26rep=rep1%26type=pdf

    Google Scholar 

  76. Olaolu DT, Akpor OB, Akor CO (2014) Pollution indicators and pathogenic microorganisms in wastewater treatment: implication on receiving water bodies. Int J Environ Prot Policy 2:205–212. https://doi.org/10.11648/j.ijepp.20140206.12

    Article  Google Scholar 

  77. Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353. https://doi.org/10.4067/S0718-95162010000100008

    Article  Google Scholar 

  78. Samanta S (2013) Metal and pesticide pollution scenario in Ganga River system. Aquat Ecosyst Heal Manag 16:454–464. https://doi.org/10.1080/14634988.2013.858587

    Article  CAS  Google Scholar 

  79. Kumari B, Madan VK, Singh J, Singh S, Kathpal TS (2004) Monitoring of pesticidal contamination of farmgate vegetables from Hisar. Environ Monit Assess 90:65–71. https://doi.org/10.1023/B:EMAS.0000003566.63111.f6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Varjani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajmohan, K.S., Chandrasekaran, R. & Varjani, S. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J Microbiol 60, 125–138 (2020). https://doi.org/10.1007/s12088-019-00841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00841-x

Keywords

Navigation