Skip to main content
Log in

Anisotropic cosmological dynamics in Einstein–Gauss–Bonnet gravity: an example of dynamical compactification in \(7+1\) dimensions

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a particular example of dynamical compactification of an anisotropic \(7+1\) dimensional Universe in Einstein–Gauss–Bonnet gravity. Starting from rather general totally anisotropic initial conditions a Universe in question evolves towards a product of two isotropic subspaces. The first subspace expands isotropically, the second represents an “inner” isotropic subspace with stabilized size. The dynamical evolution does not require fine-tuning of initial conditions, though it is possible for a particular range of coupling constants. The corresponding condition have been found analytically and have been confirmed using numerical integration of equations of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The term “geometric frustration” is used in statistical mechanics to describe a situation where it is not possible to reach a state of minimal interaction energy due to a nontrivial topology of the lattice on which the Hamiltonian is defined.

  2. For definition of constant-volume exponential solutions see [26].

References

  1. Sotiriou, T., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Article  ADS  Google Scholar 

  2. Horava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Horava, P.: Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 102, 161301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Müller, D., Ricciardone, A., Starobinsky, A., Toporensky, A.: Anisotropic cosmological solutions in \(R+R^2\) gravity. Eur. Phys. J. C 78, 311 (2018)

    Article  ADS  Google Scholar 

  6. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12(3), 498–501 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zumino, B.: Gravity theories in more than four dimensions. Phys. Rep. 137, 109–114 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. Canfora, F., Giacomini, A., Troncoso, R., Willison, S.: General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum. Phys. Rev. D 80, 044029 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chirkov, D., Giacomini, A., Toporensky, A.: Dynamic compactification with stabilized extra dimensions in cubic Lovelock gravity. Gen. Relativ. Gravit. 50(8), 98 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Garraffo, C., Giribet, G.: The Lovelock black holes. Mod. Phys. Lett. A 23, 1801 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Deruelle, N., Fariña-Busto, L.: Lovelock gravitational field equations in cosmology. Phys. Rev. D 41, 3696 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. Demaret, J., Caprasse, H., Moussiaux, A., Tombal, P., Papadopoulos, D.: Ten-dimensional Lovelock-type space-times. Phys. Rev. D 41, 1163 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Müller-Hoissen, F.: Dimensionally Continued Euler forms: Kaluza–Klein cosmology and dimensional reduction. Class. Quantum Grav. 3, 665 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  14. Marugan, G.A.Mena : Dynamically generated four-dimensional models in Lovelock cosmology. Phys. Rev. D 46, 4340 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Boulware, D., Deser, S.: String generated gravity models. Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  16. Canfora, F., Giacomini, A., Pavluchenko, S.A.: Dynamical compactification in Einstein–Gauss–Bonnet gravity from geometric frustration. Phys. Rev. D 88(6), 064044 (2013)

    Article  ADS  Google Scholar 

  17. Canfora, F., Giacomini, A., Pavluchenko, S.A.: Cosmological dynamics in higher-dimensional Einstein–Gauss–Bonnet gravity. Gen. Rel. Grav. 46(10), 1805 (2014)

    Article  ADS  Google Scholar 

  18. Yearsley, J., Barrow, J.D.: Cosmological models of dimensional segregation. Class. Quantum Grav. 13, 2693 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. Popov, A.A., Rubin, S.G.: Evolution of sub-spaces at high and low energies. arXiv:1907.05759

  20. Canfora, F., Giacomini, A., Pavluchenko, S., Toporensky, A.: Friedmann dynamics recovered from compactified Einstein–Gauss–Bonnet cosmology. Grav. Cosmol. 24(1), 28–38 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ivashchuk, V.D.: On cosmological-type solutions in multi-dimensional model with Gauss–Bonnet term. Int. J. Geom. Methods Mod. Phys. 7, 797 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kirnos, I.V., Makarenko, A.N., Pavluchenko, S.A., Toporensky, A.V.: The nature of singularity in multidimensional anisotropic Gauss–Bonnet cosmology with a perfect fluid. Gen. Relativ. Gravit. 42, 2633 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kirnos, I.V., Pavluchenko, S.A., Toporensky, A.V.: New features of a flat (4 + 1)-dimensional cosmological model with a perfect fluid in Gauss–Bonnet gravity. Gravitat. Cosmol. 16, 274 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Chirkov, D.M., Pavluchenko, S.A., Toporensky, A.V.: Exact exponential solutions in Einstein–Gauss–Bonnet flat anisotropic cosmology. Mod. Phys. Lett. A 29, 1450093 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chirkov, D., Pavluchenko, S., Toporensky, A.: Non-constant volume exponential solutions in higher-dimensional Lovelock cosmologies. Gen. Relativ. Gravit. 47, 137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Chirkov, D., Pavluchenko, S., Toporensky, A.: Constant volume exponential solutions in Einstein–Gauss–Bonnet flat anisotropic cosmology with a perfect fluid. Gen. Relativ. Gravit. 46, 1799 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ivashchuk, V.D.: On stability of exponential cosmological solutions with non-static volume factor in the Einstein–Gauss–Bonnet model. Eur. Phys. J. C 76, 431 (2016). arXiv:1607.01244v2

  28. Ivashchuk, V.D.: On anisotropic Gauss–Bonnet cosmologies in \((n + 1)\) dimensions, governed by an \(n\)-dimensional Finslerian 4-metric. Grav. Cosmol. 16(2), 118–125 (2010). arXiv:0909.5462

    Article  ADS  MathSciNet  Google Scholar 

  29. Chirkov, D., Toporensky, A.: Splitting into two isotropic subspaces as a result of cosmological evolution in Einstein–Gauss–Bonnet gravity. Grav. Cosmol. 25(3), 243 (2019). arXiv:1812.06759

    Article  ADS  MathSciNet  Google Scholar 

  30. Pavluchenko, S.A.: Stability analysis of exponential solutions in Lovelock cosmologies. Phys. Rev. D 92, 104017 (2015). arXiv:1507.01871

    Article  ADS  MathSciNet  Google Scholar 

  31. Ernazarov, K.K., Ivashchuk, V.D., Kobtsev, A.A.: On exponential solutions in the Einstein–Gauss–Bonnet cosmology, stability and variation of G. Grav. Cosmol. 22(3), 245–250 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chirkov, D.M., Toporensky, A.V.: On stable exponential cosmological solutions in the EGB model with a \(\Lambda \)-term in dimensions D = 5, 6, 7, 8. Grav. Cosmol. 23(4), 359 (2017). arXiv:1706.08889

    Article  ADS  Google Scholar 

  33. Pavluchenko, S., Toporensky, A.: Effects of spatial curvature and anisotropy on the asymptotic regimes in Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 78, 373 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of A. V. T. was supported by RFBR Grant 20-02-00411 and by the Russian Government Program of Competitive Growth of Kazan Federal University. The work of A. G. was supported by FONDECYT Grant No. 1200293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Chirkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Geometric frustration for low-dimensional cases

Appendix A: Geometric frustration for low-dimensional cases

In this section we prove that compactification and isotropization regimes do not coexist in (\(5+1\)) and (\(6+1\))-dimensional EGB cosmological models. For (\(5+1\))-dimensional model we also find all possible values of \(\xi =\alpha \Lambda \) for which compactified solutions exist; it is much more complicated to find all such \(\xi \) for (\(6+1\))-dimensional model, so in the latter case we restrict ourselves by proving that compactification regime can not coexist with isotropic regime.

1.1 (\(5+1\))-Dimensional model

Asymptotic equations in (\(5+1\))-dimensional EGB cosmological model:

$$\begin{aligned} b_0^{2}(\xi -6H_0^{2}\alpha )+24H_0^{2}{\alpha }^{2}+2\alpha= & {} 0 \end{aligned}$$
(A1)
$$\begin{aligned} 24H_0^{4}\alpha ^{2}+12H_0^{2}\alpha -\xi= & {} 0 \end{aligned}$$
(A2)

Let \(z=H_0^{2};\;y=b_0^{2}\). Then Eqs. (A9)–(A10) take the form:

$$\begin{aligned} y(\xi -6z\alpha )+24z{\alpha }^{2}+2\alpha= & {} 0\Longleftrightarrow y=\frac{2\alpha \left( 12\,z\alpha +1\right) }{6\,z\alpha -\xi } \end{aligned}$$
(A3)
$$\begin{aligned} 24z^2\alpha ^{2}+12z\alpha -\xi= & {} 0\Longleftrightarrow z_{\pm }=\frac{-1\pm \sqrt{1+\frac{2}{3}\xi }}{4\alpha } \end{aligned}$$
(A4)

Substituting \(z_+\) and \(z_-\) into expression for y (see (A11)) we obtain correspondingly

$$\begin{aligned} y_+=\frac{4\alpha \left( \sqrt{1+\frac{2}{3}\xi }-\frac{2}{3}\right) }{\sqrt{1+\frac{2}{3}\xi }-\left( 1+\frac{2}{3}\xi \right) }\quad \text{ and }\quad y_-=\frac{4\alpha \left( \sqrt{1+\frac{2}{3}\xi }+\frac{2}{3}\right) }{\sqrt{1+\frac{2}{3}\xi }+\left( 1+\frac{2}{3}\xi \right) } \end{aligned}$$
(A5)

One can see that real values of \(z_{\pm }\) and \(y_{\pm }\) exist only for \(\xi >-\frac{3}{2}\). Also both z and y must be positive. Table 2 demonstrates values of \(\xi \) for which positive z and y exist. This allows us to conclude that compactification in (\(5+1\)) model is possible iff \(\xi \in \left( -\frac{3}{2};-1\right) \).

Table 2 Values of \(\xi \) for which positive z and y exist

Isotropic solutions in (\(5+1\))-dimensional EGB cosmological model are defined as

$$\begin{aligned} H^2=\frac{-1\pm \sqrt{1+\frac{6}{5}\xi }}{12\alpha } \end{aligned}$$
(A6)

For \(\xi \in \Bigl [-\frac{5}{6};0\Bigr )\) we have 4 possible solutions:

$$\begin{aligned} H=\pm \sqrt{\frac{-1\pm \sqrt{1+\frac{6}{5}\xi }}{12\alpha }},\;\alpha <0 \end{aligned}$$
(A7)

For \(\xi >0\) we have 2 possible solutions:

$$\begin{aligned} H=\pm \sqrt{\frac{-1+\sqrt{1+\frac{6}{5}\xi }}{12\alpha }},\;\alpha >0 \end{aligned}$$
(A8)

Taking into account that isotropic solutions exist for \(\xi \geqslant -\frac{5}{6}\), but asymptotic equations (A1)–(A2) has no real solutions for \(\xi \geqslant -\frac{5}{6}\), we conclude isotropization and compactification regimes do not coexist in (\(5+1\))-dimensional EGB cosmological model.

Note that numerical attempts to find compactification solution in \((5+1)\) dimensions have been unsuccessful [33], and the reason for that is still unknown.

1.2 (\(6+1\))-Dimensional model

Asymptotic equations in (\(6+1\))-dimensional EGB cosmological model:

$$\begin{aligned} \left( 6\alpha b_0^4-72\alpha ^{2}b_0^{2}\right) H_0^{2}-\xi b_0^{4}-6\alpha b_0^{2}= & {} 0 \end{aligned}$$
(A9)
$$\begin{aligned} 24H_0^{4}\alpha ^{2}b_0^{4}+\left( 12\alpha b_0^{4}-48\alpha ^{2}b_0^{2}\right) H_0^{2}-\xi b_0^{4}-2\alpha b_0^{2}= & {} 0 \end{aligned}$$
(A10)

Let \(z=H_0^{2};\;y=b_0^{2}\). Then equations (A9)–(A10) take the form:

$$\begin{aligned} \left( 6\alpha y^2-72\alpha ^{2}y\right) z-\xi y^2-6\alpha y= & {} 0 \end{aligned}$$
(A11)
$$\begin{aligned} 24\alpha ^{2}z^2y^2+\left( 12\alpha y^2-48\alpha ^{2}y\right) z-\xi y^2-2\alpha y= & {} 0 \end{aligned}$$
(A12)

Note that both z and y must be positive. Solving (A11) to z we get

$$\begin{aligned} z=\frac{y\xi +6\alpha }{6\alpha (y-12\alpha )} \end{aligned}$$
(A13)

Substitution (A13) into (A12) gives us equation for y:

$$\begin{aligned} \xi \left( \xi +\frac{3}{2}\right) {y}^{3}+15\,\alpha \,{y}^{2}-72\left( \xi +\frac{5}{2}\right) {\alpha }^{2}y+432{\alpha }^{3}=0 \end{aligned}$$
(A14)

First, we show that there are no real-valued solutions of the Eqs. (A9)–(A10) for \(\xi >-\frac{3}{2}\). It is easy to check that

$$\begin{aligned} F'(y)= & {} 3\xi \left( \xi +\frac{3}{2}\right) y^2+30\alpha y-72\alpha ^2\left( \xi +\frac{5}{2}\right) \end{aligned}$$
(A15)
$$\begin{aligned} F'(y)= & {} 0\Longleftrightarrow y_{\pm }=\frac{-5\alpha \pm 5|\alpha |\sqrt{1+\frac{24}{25}\xi \left( \xi +\frac{3}{2}\right) \left( \xi +\frac{5}{2}\right) }}{\xi \left( \xi +\frac{3}{2}\right) } \end{aligned}$$
(A16)

I. \(-\frac{3}{2}<\xi<0\Longrightarrow \alpha<0;\;\xi \left( \xi +\frac{3}{2}\right)<0;\;y_+<0,\,y_-<0\), therefore \(F'(y)<0\) for all \(y>0\), so function F(y) decrease monotonically for \(y>0\). Taking into account that \(F(0)=432{\alpha }^{3}<0\) and \(F(y)\xrightarrow [y\rightarrow +\infty ]{}-\infty \) we conclude that function F(y) has no positive roots for \(\xi \in \Bigl (-\frac{3}{2};0\Bigr )\) and, therefore, there does not exist real values of \(b_0\) for \(\xi \in \Bigl (-\frac{3}{2};0\Bigr )\).

II. \(\xi>0\Longrightarrow \alpha>0;\;\xi \left( \xi +\frac{3}{2}\right)>0;\;y_-<0,\,y_+>0\). Function F(y) has minimum at \(y_+>0\); \(F(0)=432{\alpha }^{3}>0,\;F(y)\xrightarrow [y\rightarrow +\infty ]{}+\infty \), so if \(F(y_+)<0\) then F(y) has 2 positive zeros. Substituting \(y_+\) into function F we get

$$\begin{aligned}&F(y_+)=-\frac{2\alpha ^3\left( 125\left( Q^{3/2}-1\right) -18\xi \left( \xi +\frac{3}{2}\right) (12\,{\xi }^{2}+28\,\xi +25)\right) }{\xi ^2\left( \xi +\frac{3}{2}\right) ^2},\;\nonumber \\&\quad \quad Q=1+\frac{24}{25}\xi \left( \xi +\frac{3}{2}\right) \left( \xi +\frac{5}{2}\right) \end{aligned}$$
(A17)

and it is easy to see that it is negative for any \(\xi >0\), \(\alpha >0\).

Once we find y from (A14), we should substitute it to (A13) and find z; since z must be positive, solution of (A14) must obey inequality \(y>12\alpha \).

Since \(F(12\alpha )=1728\alpha ^3\left( \xi +\frac{1}{2}\right) ^2>0\) the point \(y=12\alpha \) can not been located between two roots of the equation \(F(y)=0\). Thus, if \(y_+<12\alpha \) then both roots are smaller than \(12\alpha \).

In order to compare \(y_+\) and \(12\alpha \) we introduce function \(G(\xi )\equiv \frac{y_+(\xi ,\alpha )}{12\alpha }= \frac{5\left( \sqrt{1+\frac{24}{25}\xi \left( \xi +\frac{3}{2}\right) \left( \xi +\frac{5}{2}\right) }-1\right) }{12\xi \left( \xi +\frac{3}{2}\right) }\). It is easy to check that \(G'(\xi )<0\) for \(\xi >0\), so function \(G(\xi )\) decrease monotonically for all positive values \(\xi \). On the other hand \(\lim \limits _{\xi \rightarrow 0}G(\xi )=\frac{1}{2}\). It means that \(G(\xi )<\frac{1}{2}\) for \(\xi >0\) and, therefore, \(y_+<6\alpha \). So, all positive roots of function F(y) are smaller than \(12\alpha \), values of z corresponding to these roots are negative and, therefore, there does not exist real values of \(H_0\) for \(\xi >0\).

Second, we turn to isotropic solutions in (\(6+1\))-dimensional EGB cosmological model:

$$\begin{aligned} H^2=\frac{-1\pm \sqrt{1+\frac{8}{5}\xi }}{24\alpha } \end{aligned}$$
(A18)

For \(\xi \in \Bigl [-\frac{5}{8};0\Bigr )\) we have 4 possible solutions:

$$\begin{aligned} H=\pm \sqrt{\frac{-1\pm \sqrt{1+\frac{8}{5}\xi }}{24\alpha }},\;\alpha <0 \end{aligned}$$
(A19)

For \(\xi >0\) we have 2 possible solutions:

$$\begin{aligned} H=\pm \sqrt{\frac{-1+\sqrt{1+\frac{8}{5}\xi }}{24\alpha }},\;\alpha >0 \end{aligned}$$
(A20)

So, isotropic solutions exist for \(\xi \geqslant -\frac{5}{8}\). Remember the asymptotic equations (A9)–(A10) has no real solutions for \(\xi \geqslant -\frac{3}{2}\). Consequently, isotropization and compactification regimes do not coexist in (\(6+1\))-dimensional EGB cosmological model.

Compactification regime in \((6+1)\) dimensions have been found numerically [33]. Note, however, that structure of equations prevents solution with zero effective cosmological constant in the bigger subspace since \(H=0\) requires \(b=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, D., Giacomini, A. & Toporensky, A. Anisotropic cosmological dynamics in Einstein–Gauss–Bonnet gravity: an example of dynamical compactification in \(7+1\) dimensions. Gen Relativ Gravit 52, 30 (2020). https://doi.org/10.1007/s10714-020-02679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02679-x

Keywords

Navigation