Skip to main content
Log in

In vitro-based doubled haploid production: recent improvements

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The doubled haploid system is the fastest way of hybrid variety production and plays an important role in breeding programs and developmental studies. The most commonly used methods of haploid induction, leading to haploid plants in vitro through the plant tissue/cell culture, are named as the in vitro -based (IVB) methods. These methods have been established in many of the important crops, such as barley, pepper, rapeseed, rice, sugar beet, and wheat. There are ongoing researches to optimize and improve the efficiency of these methods by focusing on factors involved in induction and regeneration phases. These factors mainly include plant genotype, the surrounding environment of parental plants, components of culture medium, the developmental stage of initial gametophytic cells, physical treatments (cold pre-treatment, heat shock) of cultured gametophytic cells, and application of different additives and plant growth regulators. Stress treatment is one of the important prerequisites for stimulation of gametophytic cells to switch towards the sporophytic pathway. However, autophagy and programmed cell death, oxidative stress, and production of reactive oxygen species (ROS) are the major limiting factors in stress-induced embryogenesis. The positive effect of different additives, such as plant growth regulators, chlormequat, polyamines (putrescine, spermidine, and spermine), stress hormones (abscisic acid, jasmonic acid, salicylic acid), DNA demethylating agents and histone deacetylase inhibitors, cellular antioxidants, cell wall remodeling agents (arabinogalactan-proteins), and compatible solutes (proline and chitosan), has been proved on the efficiency of haploid induction through IVB methods. Different mechanisms have been reported through which the aforementioned additives can enhance tolerance to embryo-inducing stresses in plants, and subsequently increase the efficiency of induction phase of IVB methods of haploid induction. Finding the best combination/interaction of inductive stresses and their corresponding chemical enhancers is crucial for successful haploid induction through IVB methods. In the present review, we highlighted recently applied additives to enhance the efficiency of the major IVB methods of haploid induction in different plants. Other potentially applicable additives, those are involved in preventing ROS accumulation, ethylene inhibitors, activating of antioxidant enzyme activity, detoxification capacity, and defense response signal pathway, which could be useful in IVB haploid induction are also discussed. The presented information could be useful to improve the efficiency of developed IVB protocols and/or to develop new protocols in recalcitrant species/genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGPs:

Arabinogalactan-proteins

BAP:

6-Benzylaminopurine

CCC:

Chlormequat chloride

CENH3:

Centromere histone H3

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas:

CRISPR-associated

DH:

Doubled haploid

GA3 :

Gibberellic acid

IAA:

Indole-3-acetic acid

IMC:

Isolated microspore culture

IVB:

In vitro-based

GWAS:

Genome-wide association

MS:

Murashige and Skoog medium

NAA:

1-Naphthaleneacetic acid

PGR:

Plant growth regulator

QTL:

Quantitative trait loci

RB:

Reverse breeding

ROS:

Reactive oxygen species

SMC:

Shed microspore culture

TALENs:

Transcription activator-like effector nucleases

TDZ:

Thidiazuron

TILLING:

Targeting induced local lesions in genomes

ZFNs:

Zinc-finger nucleases

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Abdipour M, Ramazani SHR, Younessi-Hmazekhanlu M, Niazian M (2018) Modeling oil content of sesame (Sesamum indicum L.) using artificial neural network and multiple linear regression approaches. J Am Oil Chem’ Soc 95:283–297

    CAS  Google Scholar 

  • Abdollahi MR, Rashidi S (2018) Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2,4-D and silver nitrate containing media. Plant Cell Tissue Organ Cult 133(1):39–49

    CAS  Google Scholar 

  • Abdollahi MR, Eshaghi ZC, Majdi M (2017) Improvement in androgenic response of borage (Borago officinalis L.) cultured anthers using antibrowning agents and picloram. Turk J Biol 41(2):354–363

    CAS  Google Scholar 

  • Agustí M, Primo-Millo E (2020) Flowering and fruit set. In: Talon M, Caruso M, Gmitter FG (eds) The genus citrus. Woodhead Publishing, Cambridge, pp 219–244

    Google Scholar 

  • Ahmadi B, Shariatpanahi ME (2015) Proline and chitosan enhanced efficiency of microspore embryogenesis induction and plantlet regeneration in Brassica napus L. Plant Cell Tissue Organ Cult 123(1):57–65

    CAS  Google Scholar 

  • Ahmadi B, Shariatpanahi ME, da Silva JAT (2014a) Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tissue Organ Cult 116(3):343–351

    CAS  Google Scholar 

  • Ahmadi B, Shariatpanahi ME, Ojaghkandi MA, Heydari AA (2014b) Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L. Plant Cell Tissue Organ Cult 118(3):497–505

    CAS  Google Scholar 

  • Ahmadi B, Shariatpanahi ME, Asghari-Zakaria R, Zare N, Azadi P (2015) Efficient microspore embryogenesis induction in tomato (Lycopersicon esculentum Mill) using shed microspore culture. J Pure Appl Microbiol 9(2):21–29

    CAS  Google Scholar 

  • Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M (2016) Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L: implication for microspore embryogenesis and plant regeneration. Plant Cell Rep 35(1):185–193

    CAS  PubMed  Google Scholar 

  • Ahmadi B, Ahmadi M, da Silva JAT (2018) Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death. Planta 248(6):1339–1350

    CAS  PubMed  Google Scholar 

  • Amirian R, Hojati Z, Azadi P (2020) Male flower induction significantly affects androgenesis in cucumber (Cucumis sativus L.). J Hortic Sci Biotech 95(2):183–191

    CAS  Google Scholar 

  • Begheyn RF, Roulund N, Vangsgaard K, Kopecký D, Studer B (2017) Inheritance patterns of the response to in vitro doubled haploid induction in perennial ryegrass (Lolium perenne L.). Plant Cell Tissue Organ Cult 130(3):667–679

    CAS  Google Scholar 

  • Berenguer E, Solís MT; Pérez-Pérez Y, Minina Y, Risueño MC, Bozhkov P, Testillano PS (2017) Metacaspases and autophagy are induced in microspore embryogenesis of Brassica napus. In: Proceedings 2nd meeting WG3 transautophagy cost action CA15138, Madrid, 23–24 Mar 2017

  • Bhatia R, Dey SS, Sood S, Sharma K, Sharma VK, Parkash C, Kumar R (2016) Optimizing protocol for efficient microspore embryogenesis and doubled haploid development in different maturity groups of cauliflower (B oleracea var botrytis L) in India. Euphytica 212(3):439–454

    Google Scholar 

  • Bohanec B (2009) Doubled haploids via gynogenesis. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht

    Google Scholar 

  • Brew-Appiah RA, Ankrah N, Liu W, Konzak CF, von Wettstein D, Rustgi S (2013) Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS One 8(11):e80155

    PubMed  PubMed Central  Google Scholar 

  • Chen JT, Chang WC (2003) Effects of GA3, ancymidol, cycocel and paclobutrazol on direct somatic embryogenesis of Oncidium in vitro. Plant Cell Tissue Organ Cult 72(1):105–108

    CAS  Google Scholar 

  • Chen W, Zhang Y, Ren J, Ma Y, Liu Z, Hui F (2019) Effects of methylene blue on microspore embryogenesis and plant regeneration in ornamental kale (Brassica oleracea var. acephala). Sci Hortic 248:1–7

    Google Scholar 

  • Chen H, Hao H, Han C, Wang H, Wang Q, Chen M, Juan J, Feng Z, Zhang J (2020) Exogenous l-ascorbic acid regulates the antioxidant system to increase the regeneration of damaged mycelia and induce the development of fruiting bodies in Hypsizygus marmoreus. Fungal Biol. 1:1. https://doi.org/10.1016/j.funbio.2020.02.010

    Article  CAS  Google Scholar 

  • Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci 130(4):555–560

    Google Scholar 

  • Conner JA, Podio M, Ozias-Akins P (2017) Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod 30(1):41–52

    CAS  PubMed  Google Scholar 

  • Corral-Martínez P, Driouich A, Seguí-Simarro JM (2019) Dynamic changes in arabinogalactan-protein, pectin, xyloglucan and xylan composition of the cell wall during microspore embryogenesis in Brassica napus. Front Plant Sci 10:332

    PubMed  PubMed Central  Google Scholar 

  • Datta SK (2005) Androgenic haploids: factors controlling development and its application in crop improvement. Curr Sci 89:1870–1878

    CAS  Google Scholar 

  • Dong YQ, Zhao WX, Li XH, Liu XC, Gao NN, Huang JH, Wang WY, Xu XL, Tang ZH (2016) Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep 35(10):1991–2019

    CAS  PubMed  Google Scholar 

  • Dunemann F, Unkel K, Sprink T (2018) Using CRISPR/Cas9 to produce haploid inducers of carrot through targeted mutations of centromeric histone H3 (CENH3). In: Grzebelus D, Barański R (eds) II international symposium on carrot and other apiaceae. ISHS, Leuven, pp 211–220

    Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33(6):812–829

    PubMed  Google Scholar 

  • Ebrahimzadeh H, Shariatpanahi ME, Ahmadi B, Soltanloo H, Lotfi M, Zarifi E (2018) Efficient parthenogenesis induction and in vitro haploid plant regeneration in cucumber (Cucumis sativus L.) using putrescine, spermidine, and cycocel. J Plant Growth Regul 37(4):1127–1134

    CAS  Google Scholar 

  • Esteves P, Belzile FJ (2018) TDZ in cereal gametic embryogenesis. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore

    Google Scholar 

  • Fang P, Yan M, Chi C, Wang M, Zhou Y, Zhou J, Shi K, Xia X, Foyer CH, Yu J (2019) Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiol 180:2061–2076

    CAS  PubMed  Google Scholar 

  • Fayos O, Vallés MP, Garcés-Claver A, Mallor C, Castillo AM (2015) Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling. Front Plant Sci 6:384. https://doi.org/10.3389/fpls.2015.00384

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104(3):301–309

    Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375

    CAS  PubMed  Google Scholar 

  • Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ Cult 86(2):131–146

    Google Scholar 

  • Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104(3):283–300

    Google Scholar 

  • Gilles LM, Martinant JP, Rogowsky PM, Widiez T (2017) Haploid induction in plants. Curr Biol 27(20):1095–1097

    Google Scholar 

  • Gu H, Sheng X, Zhao Z, Yu H, Wang J (2014) Initiation and development of microspore embryogenesis and plant regeneration of Brassica nigra. Vitro Cell Dev Biol Plant 50(5):534–540

    CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497–498

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 1:1–18

    Google Scholar 

  • Handa N, Kohli SK, Kaur R, Sharma A, Kumar V, Thukral AK, Arora S, Bhardwaj R (2018) Role of compatible solutes in enhancing antioxidative defense in plants exposed to metal toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore

    Google Scholar 

  • Heidari AA, Shariatpanahi ME, Mousavi A, Kalatejari S (2017) Efficient androgenic embryo induction and plant regeneration in different genotypes of sweet pepper via anther culture. J Pure Appl Microbio 11(1):23–29

    Google Scholar 

  • Heidari-Zefreh AA, Shariatpanahi ME, Mousavi A, Kalatejari S (2018) Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256(1):13–24

    PubMed  Google Scholar 

  • Hesami M, Naderi R, Tohidfar M (2019) Modeling and optimizing in vitro sterilization of chrysanthemum via multilayer perceptron-non-dominated sorting genetic algorithm-II (MLP-NSGAII). Front Plant Sci 10:282

    PubMed  PubMed Central  Google Scholar 

  • Hoveida ZS, Abdollahi MR, Mirzaie-Asl A, Moosavi SS, Seguí-Simarro JM (2017) Production of doubled haploid plants from anther cultures of borage (Borago officinalis L.) by the application of chemical and physical stress. Plant Cell Tissue Organ Cult 130(2):369–378

    CAS  Google Scholar 

  • Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438

    CAS  PubMed  Google Scholar 

  • Jiang F, Ryabova D, Diedhiou J, Hucl P, Randhawa H, Marillia EF, Foroud NA, Eudes F, Kathiria P (2017) Trichostatin A increases embryo and green plant regeneration in wheat. Plant Cell Rep 36(11):1701–1706

    CAS  PubMed  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants—a changing perspective. Physiol Plant 116(3):281–292

    CAS  Google Scholar 

  • Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A (2019) State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132:593–605

    CAS  PubMed  Google Scholar 

  • Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. In: Don Palmer C, Keller WA, Kasha KJ (eds) Haploids in crop improvement II: biotechnology in agriculture and forestry, vol 56. Springer, Berlin

    Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants: an introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht

    Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2002) An improved in vitro technique for isolated microspore culture of barley. In: Maluszynski M, Kasha KJ (eds) Mutations, in vitro and molecular techniques for environmentally sustainable crop improvement. Springer, Dordrecht

    Google Scholar 

  • Kästner U, Kittler J, Marthe F (2016) Comparison of in vitro haploid induction in balm (Melissa officinalis). Plant Cell Tissue Organ Cult 126(3):561–566

    Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414

    PubMed  PubMed Central  Google Scholar 

  • Khan H, Bhardwaj SC, Gangwar OP, Prasad P, Rathore R (2017) Efficiency of double haploid production in wheat through wide hybridization and embryo rescue. Indian J Genet Plant Breed 77(3):428–430

    Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 1:1–15

    Google Scholar 

  • Krzewska M, Gołębiowska-Pikania G, Dubas E, Gawin M, Żur I (2017) Identification of proteins related to microspore embryogenesis responsiveness in anther cultures of winter triticale (× Triticosecale Wittm.). Euphytica 213(8):192

    Google Scholar 

  • Kumar GP, Sivakumar S, Siva G, Vigneswaran M, Kumar TS, Jayabalan N (2016) Silver nitrate promotes high-frequency multiple shoot regeneration in cotton (Gossypium hirsutum L.) by inhibiting ethylene production and phenolic secretion. Vitro Cell Dev Biol Plant 52(4):408–418

    Google Scholar 

  • Kurtar ES, Balkaya A, Ozer MO (2018) Production of callus mediated gynogenic haploids in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Czech J Genet Plant Breed 54(1):9–16

    CAS  Google Scholar 

  • Lantos C, Juhász AG, Somogyi G, Ötvös K, Vági P, Mihály R, Kristóf Z, Somogyi N, Pauk J (2009) Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tissue Organ Cult 97(3):285–293

    Google Scholar 

  • Lantos C, Bóna L, Nagy É, Békés F, Pauk J (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell Tissue Organ Cult 133(3):385–393

    CAS  Google Scholar 

  • Li Q, Shi Y, Wang Y, Liu L, Zhang X, Chen X, Zhang L, Su Y, Zhang T (2020) Breeding of cabbage lines resistant to both head splitting and fusarium wilt via an isolated microspore culture system and marker-assisted selection. Euphytica 216(2):34

    CAS  Google Scholar 

  • Mahasuk P, Kullik AS, Iqbal MC, Möllers C (2017) Effect of boron on microspore embryogenesis and direct embryo to plant conversion in Brassica napus (L.). Plant Cell Tissue Organ Cult 130(2):443–447

    CAS  Google Scholar 

  • Makowska K, Kałużniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R (2017) Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Cult 131(2):247–257

    CAS  Google Scholar 

  • Malaga S, Janeczko A, Janowiak F, Waligórski P, Oklestkova J, Dubas E, Krzewska M, Nowicka A, Surówka E, Rapacz M, Wójcik-Jagła M (2020) Involvement of homocastasterone, salicylic and abscisic acids in the regulation of drought and freezing tolerance in doubled haploid lines of winter barley. Plant Growth Regul 90(1):173–188

    CAS  Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants. Springer, Dordrecht

    Google Scholar 

  • Mishra VK, Bajpai R, Chaturvedi R (2017) An efficient and reproducible method for development of androgenic haploid plants from in vitro anther cultures of Camellia assamica ssp assamica (Masters). Vitro Cell Dev Biol Plant 53(3):239–248

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Naik N, Rout P, Umakanta N, Verma RL, Katara JL, Sahoo KK, Singh ON, Samantaray S (2017) Development of doubled haploids from an elite indica rice hybrid (BS6444G) using anther culture. Plant Cell Tissue Organ Cult 128(3):679–689

    CAS  Google Scholar 

  • Niazian M, Sadat Noori SA, Galuszka P, Tohidfar M, Mortazavian SMM (2017a) Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Carum copticum L. Ind Crop Prod 97:330–337

    CAS  Google Scholar 

  • Niazian M, Sadat Noori SA, Galuszka P, Mortazavian SMM (2017b) Tissue culture-based Agrobacterium-mediated and in planta transformation methods. Czech J. Genet. Plant Breed 53(4):133–143

    CAS  Google Scholar 

  • Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM (2018a) Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). Vitro Cell Dev Biol Plant 54:54–68

    Google Scholar 

  • Niazian M, Sadat-Noori SA, Abdipour M (2018b) Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind Crop Prod 117:224–234

    Google Scholar 

  • Niazian M, Sadat-Noori SA, Abdipour M (2018c) Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). J Appl Res Med Aroma Plants 9:124–131

    Google Scholar 

  • Niazian M, Shariatpanahi ME, Abdipour M, Oroojloo M (2019) Modeling callus induction and regeneration in anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 56(5):1317–1332

    Google Scholar 

  • Niu L, Shi F, Feng H, Zhang Y (2019) Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis [L.] Makino var. utilis Tsen et Lee). Sci Hortic 245:57–64

    CAS  Google Scholar 

  • Nowaczyk L, Nowaczyk P, Olszewska D (2016) Treating donor plants with 2, 4-dichlorophenoxyacetic acid can increase the effectiveness of induced androgenesis in Capsicum spp. Sci Hortic 205:1–6

    CAS  Google Scholar 

  • Parthibhan S, Rao MV, Da Silva JT, Kumar TS (2018) Somatic embryogenesis from stem thin cell layers of Dendrobium aqueum. Biol Plantarum 62(3):439–450

    CAS  Google Scholar 

  • Pazuki A, Aflaki F, Gürel E, Ergül A, Gürel S (2018a) Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech 20(1):69–77

    CAS  Google Scholar 

  • Pazuki A, Aflaki F, Gürel S, Ergül A, Gürel E (2018b) Production of doubled haploids in sugar beet (Beta vulgaris): an efficient method by a multivariate experiment. Plant Cell Tissue Organ Cult 132(1):85–97

    CAS  Google Scholar 

  • Pérez-Pérez Y, Carneros E, Berenguer E, Solís MT, Bárány I, Pintos B, Gómez-Garay A, Risueño MC, Testillano PS (2019) Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Front Plant Sci 9:1915

    PubMed  PubMed Central  Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. Vitro Cell Dev Biol Plant 55(3):242–257

    Google Scholar 

  • Piosik L, Zenkteler E, Zenkteler M (2016) Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica 208(3):439–451

    CAS  Google Scholar 

  • Popova T, Grozeva S, Todorova V, Stankova G, Anachkov N, Rodeva V (2016) Effects of low temperature, genotype and culture media on in vitro androgenic answer of pepper (Capsicum annuum L.). Acta Physiol Plant 38:273

    Google Scholar 

  • Pourabdollah Najafabadi F, Shariatpanahi ME, Ahmadi B, Sima NKK, Alizadeh B, Oroojloo M (2015) Effects of heat shock and 2,4-D treatment on morphological and physiological characteristics of microspores and microspore-derived doubled haploid plants in Brassica napus L. Iran J Biotechnol 13(2):31–38

    PubMed  PubMed Central  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618

    CAS  PubMed  Google Scholar 

  • Ren J, Wu P, Trampe B, Tian X, Lübberstedt T, Chen S (2017) Novel technologies in doubled haploid line development. Plant Biotechnol J 15(11):1361–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resch T, Touraev A (2010) Pollen transformation technologies. In: Stewart N, Touraev A, Citovsky V, Tzfira T (eds) Plant Transformation Technologies. Wiley, New York, pp 83–91

    Google Scholar 

  • Ribarits A, Mamun ANK, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A (2009) A Novel and reversible male sterility system using targeted inactivation of glutamine synthetase and doubled haploidy. In: Touraev A, Forster BP, Jain SM (eds) Advances in Haploid Production in Higher Plants. Springer, Dordrecht

    Google Scholar 

  • Rivas-Sendra A, Calabuig-Serna A, Seguí-Simarro JM (2017a) Dynamics of calcium during in vitro microspore embryogenesis and in vivo microspore development in Brassica napus and Solanum melongena. Front Plant Sci 8:1177

    PubMed  PubMed Central  Google Scholar 

  • Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, Seguí-Simarro JM (2017b) Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica 213(4):89

    Google Scholar 

  • Rodríguez-Sanz H, Moreno-Romero J, Solís MT, Kohler C, Risueño MC, Testillano PS (2014) Changes in histone methylation and acetylation during microspore reprogramming to embryo-genesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenet Genome Res 143:209–218

    PubMed  Google Scholar 

  • Sakhanokho HF, Ozias-Akins P, May OL, Chee PW (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell Tissue Organ Cult 81(1):91–95

    CAS  Google Scholar 

  • Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184(2):235–250

    Google Scholar 

  • Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci 268:30–38

    CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. PNAS 108(33):E498–E505

    CAS  PubMed  Google Scholar 

  • Sarao NK, Gosal SS (2018) In vitro androgenesis for accelerated breeding in rice. In: Gosal S, Wani S (eds) Biotechnologies of Crop Improvement, vol 1. Springer, Cham

    Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134(1):1–12

    PubMed  Google Scholar 

  • Shariatpanahi ME, Ahmadi B (2016) Isolated microspore culture and its applications in plant breeding and genetics. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 487–507

    Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006a) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127(4):519–534

    CAS  Google Scholar 

  • Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E, Touraev A (2006b) Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Rep 25(12):1294–1299

    CAS  PubMed  Google Scholar 

  • Shariatpanahi ME, Ebrahimzadeh H, Niazian M, Eskandari A, Ahmadi B (2018) Amino acids and cycocel application to enhance cucumber haploid embryogenesis with gamma irradiated pollen. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology; Vienna (Austria); IAEA-CN–263-93

  • Sharma S, Satardekar KV, Barve SS (2018) Genetic improvement of medicinal and aromatic plants through haploid and double haploid development. In: Kumar N (ed) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore, pp 523–556

    Google Scholar 

  • Shen Y, Pan G, Lübberstedt T (2015) Haploid strategies for functional validation of plant genes. Trends Biotechnol 33(10):611–620

    CAS  PubMed  Google Scholar 

  • Ślusarkiewicz-Jarzina A, Pudelska H, Woźna J, Pniewski T (2017) Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants. J Appl Genet 58(3):287–295

    PubMed  PubMed Central  Google Scholar 

  • Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS (2015) 5-Azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front Plant Sci 6:472

    PubMed  PubMed Central  Google Scholar 

  • Sood S, Dwivedi S (2015) Doubled haploid platform: an accelerated breeding approach for crop improvement. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant Biology and Biotechnology, Volume II: Plant Genomicsand Biotechnology. Springer, New Delhi, pp 89–111

    Google Scholar 

  • Supena EDJ, Custers JBM (2011) Refinement of shed-microspore culture protocol to increase normal embryos production in hot pepper (Capsicum annuum L.). Sc Hortic 130(4):769–774

    Google Scholar 

  • Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25(1):1–10

    CAS  PubMed  Google Scholar 

  • Szarejko I (2003) Anther culture for doubled haploid production in barley (Hordeum vulgare L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants. Springer, Dordrecht

    Google Scholar 

  • Testillano PS (2018) Stress-induced microspore embryogenesis in crop plants: cell totipotency acquisition and embryo development. In: Cánovas F, Lüttge U, Leuschner C, Risueño MC (eds) Progress in Botany, vol 81. Springer, Cham

    Google Scholar 

  • Testillano PS, Coronado MJ, Seguı JM, Domenech J, González-Melendi P, Raška I, Risueño MC (2000) Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J Struct Biol 129(2–3):223–232

    CAS  PubMed  Google Scholar 

  • Testillano PS, Coronado MJ, Thierry AM, Matthys-Rochon E, Risueño MC (2010) In situ detection of Esr proteins secretion during maize microspore embryogenesis and their secretion blockage show effects on the culture progression. Funct Plant Biol 37:985–994

    CAS  Google Scholar 

  • Tiburcio AF, Alcázar R (2018) Potential applications of polyamines in agriculture and plant biotechnology. In: Alcázar R, Tiburcio A (eds) Polyamines: Methods in molecular biology, vol 1694. Humana Press. New York, NY, pp 489–508

    Google Scholar 

  • Uskutoğlu T, Uskutoğlu D, Turgut K (2019) Effects on pre-treatment and different tissue culture media for androgenesis in Stevia rebaudiana Bertoni. Sugar Tech 21(6):1016–1023

    Google Scholar 

  • Wang GF, Qin HY, Sun D, Fan ST, Yang YM, Wang ZX, Xu PL, Zhao Y, Liu YX, Ai J (2018) Haploid plant regeneration from hardy kiwifruit (Actinidia arguta Planch.) anther culture. Plant Cell Tissue Organ Cult 134(1):15–28

    CAS  Google Scholar 

  • Wang HM, Enns JL, Nelson KL, Brost JM, Orr TD, Ferrie AMR (2019) Improving the efficiency of wheat microspore culture methodology: evaluation of pretreatments, gradients, and epigenetic chemicals. Plant Cell Tissue Organ Cult 139(3):589–599

    CAS  Google Scholar 

  • Watts A, Kumar V, Raipuria RK, Bhattacharya RC (2018) In vivo haploid production in crop plants: methods and challenges. Plant Mol Biol Rep 36(5–6):685–694

    CAS  Google Scholar 

  • Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E, Gotębiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht

    Google Scholar 

  • Yerzhebayeva RS, Abekova AM, Ainebekova BA, Urazaliyev KR, Bazylova TA, Daniyarova AK, Bersimbayeva GK (2017) Influence of different concentrations of ascorbic and gibberellic acids and pH of medium on embryogenesis and regeneration in anther culture of spring triticale. Cytol Genet 51(6):448–454

    Google Scholar 

  • Zeng A, Song L, Cui Y, Yan J (2017) Reduced ascorbate and reduced glutathione improve embryogenesis in broccoli microspore culture. S Afr J Bot 109:275–280

    CAS  Google Scholar 

  • Zhang L, Zhang Y, Gao Y, Jiang X, Zhang M, Wu H, Liu Z, Feng H (2016) Effects of histone deacetylase inhibitors on microspore embryogenesis and plant regeneration in Pakchoi (Brassica rapa ssp. chinensis L.). Sci Hortic 209:61–66

    CAS  Google Scholar 

  • Zhang XW, Liu FJ, Zhai J, Bi HG, Ai XZ (2020) Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251:69

    CAS  PubMed  Google Scholar 

  • Żur I, Dubas E, Krzewska M, Janowiak F (2015) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:424

    PubMed  PubMed Central  Google Scholar 

  • Żur I, Dubas E, Krzewska M, Zieliński K, Fodor J, Janowiak F (2019) Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (× Triticosecale Wittm). Plant Cell Rep 38(2):195–209

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Piama Svoboda for her kind assistance in the English language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MES conceived the idea and corrected the whole body of manuscript, M N wrote the manuscript.

Corresponding author

Correspondence to Mehran E. Shariatpanahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazian, M., Shariatpanahi, M.E. In vitro-based doubled haploid production: recent improvements. Euphytica 216, 69 (2020). https://doi.org/10.1007/s10681-020-02609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02609-7

Keywords

Navigation