Skip to main content

Advertisement

Log in

Assessment with remotely sensed soil moisture products and ground-based observations over three dense network

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Soil moisture (SM) is a key variable in hydrological processes, bio-ecological processes, and biogeochemical processes. Long-term observations of soil moisture over large areas are critical to research on flooding and drought monitoring, water resource management, and crop yield forecasts. In this paper, Fengyun (FY3B and FY3C) SM products, Japan Aerospace Exploration Agency (JAXA) SM products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Land Parameter Retrieval Model (LPRM) AMSR2 L3 SM products, the Version 2 (v2) global land parameter data record (LPDR) of SM products, Soil Moisture Ocean Salinity (SMOS) Centre Aval de Traitement des Données SMOS (CATDS) L3 SM products, the Soil Moisture Active Passive (SMAP) passive L3 SM products and the European Space Agency(ESA) Climate Change Initiative (CCI) SM products were evaluated using the ground-based observations in the Little Washita, Fort Cobb and Yanco networks. Long-time series comparison between measured and satellite products was conducted to evaluate the overall performance of FY3 series satellites SM products. Bias (mean bias), R (correlation coefficient), RMSE (root mean square error) and ubRMSE (unbiased root mean square error) were calculated to explore the agreement between satellite products and in-situ measurements. Taylor diagrams were used to compare the performance of various satellite products. The result showed that (1) FY3B, FY3C and LPRM AMSR2 ascending and descending products had an obvious overestimate with in-situ soil moisture in three networks. (2) JAXA AMSR2 ascending and descending products had considerable underestimation in three networks. (3) The validation result of SMOS ascending and descending products over the three networks was satisfactory, with a rather high correlation than other X-band products. (4) The validation result of SMAP ascending and descending products outperformed the other products over the Little Washita and Fort Cobb networks. (5) The ESA CCI product had the lowest values of RMSE and ubRMSE than the other products in the Yanco network, revealing the effectiveness of merging active and passive soil moisture products. (6)The LPDR descending SM products had better performance than the LPDR ascending SM products in the LW and FC networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blonquist Jr JM, Jones SB, Robinson DA (2005) A time domain transmission sensor with TDR performance characteristics. J Hydrol 314(1–4):235–245

  • Bolten JD, Crow WT, Zhan X et al (2009) Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3(1):57–66

    Article  Google Scholar 

  • Chan SK, Bindlish RE, O”Neill P et al (2016) Assessment of the smap passive soil moisture product. IEEE Trans Geosci Remote Sens:1–14

  • Chen YY, Yang K, Qin J et al (2017) Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan plateau. J Geophys Res Atmos 122(11):5780–5792

    Article  Google Scholar 

  • Choudhury BJ, Schmugge TJ, Chang A et al (1979) Effect of surface roughness on the microwave emission from soils. J Geophy Res Atmos 84(C9):5699–5706

    Article  Google Scholar 

  • Collow TW, Robock A, Basara JB et al (2012) Evaluation of SMOS retrievals of soil moisture over the Central United States with currently available in-situ observations. J Geophy Res Atmos 117(D9)

  • Cui HZ, Jiang LM, Du JY et al (2017) Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J Geophy Res Atmos 122(16):8650–8666

    Article  Google Scholar 

  • Cui CY, Xu J, Zeng JY, Chen KS et al (2018) Soil moisture mapping from satellites: an Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens 10(1):33

    Google Scholar 

  • Daly E, Porporato A (2005) A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ Eng Sci 22(1):9–24

    Article  Google Scholar 

  • Dorigo W, Wagner W, Albergel C et al (2017) ESA CCI soil moisture for improved earth system understanding: state-of-the art and future directions. Remote Sens Environ 203:185–215

    Article  Google Scholar 

  • Douville H, Chauvin F (2000) Relevance of soil moisture for seasonal climate predictions: a preliminary study. Clim Dyn 16(10–11):719–736

    Article  Google Scholar 

  • Du JY, Kimball JS, Shi JC et al (2014) Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sens 6:8594–8616

    Article  Google Scholar 

  • Du JY, Kimball JS, Jones LA (2016) Passive microwave remote sensing of soil moisture based on dynamic vegetation scattering properties for AMSR-E. IEEE Trans Geosci Remote Sens 1–12

  • Du JY, Kimball JS, Jones LA et al (2017) A global satellite environmental data record derived from AMSR-E and AMSR2 microwave earth observations. Earth System Science Data 9(2):791–808

    Article  Google Scholar 

  • El Hajj M, Baghdadi N, Zribi M, Rodríguez-Fernández N, Wigneron JP, Al-Yaari A, Al Bitar A, Albergel C, Calvet JC (2018) Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 soil moisture products at sites in southwestern France. Remote Sens 10(4):569

  • Entekhabi D, Njoku EG, O'Neill PE et al (2010) The soil moisture active passive (SMAP) Mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • Escorihuela MJ, Kerr YH, De Rosnay P et al (2007) A simple model of the bare soil microwave emission at L-band. IEEE Trans Geosci Remote Sens 45(7):1978–1987

    Article  Google Scholar 

  • Holmes TRH, De Jeu RAM, Owe M et al (2009) Land surface temperature from ka band (37 GHz) passive microwave observations. J Geophys Res 114(D4):D04113

    Article  Google Scholar 

  • Imaoka K, Maeda T, Kachi M et al (2012) Status of AMSR2 instrument on GCOM-W1. In earth observing missions and sensors: development, implementation, and characterization II. Proc SPIE 8528:852815

    Article  Google Scholar 

  • Jackson TJ (1993) III. Measuring surface soil moisture using passive microwave remote sensing. Hydrol Process 7(2):139–152

    Article  Google Scholar 

  • Jackson TJ, Schmugge TJ (1991) Vegetation effects on the microwave emission of soils. Remote Sens Environ 36(3):203–212

    Article  Google Scholar 

  • Jackson TJ, Cosh MH, Bindlish R et al (2010) Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans Geosci Remote Sens 48(12):4256–4272

    Article  Google Scholar 

  • Jones LA, Ferguson CR, Kimball JS et al (2010) Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing 3(1):111–123

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP et al (2010) The SMOS Mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Richaume P et al (2012) The SMOS soil moisture retrieval algorithm. IEEE Trans Geosci Remote Sens 50(5):1384–1403

    Article  Google Scholar 

  • Leroux DJ, Kerr YH, Al Bitar A et al (2013) Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in US. IEEE Trans Geosci Remote Sens 52(3):1562–1571

    Article  Google Scholar 

  • Li C, Lu H, Yang K et al (2018) The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan plateau. Remote Sens 10(4):535

    Article  Google Scholar 

  • Liu Q, Du JY, Shi JC et al (2013) Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan plateau, Sci. China 56(12):2173–2185

    Article  Google Scholar 

  • Liu YX, Yang YP, Yue XF (2018) Evaluation of satellite-based soil moisture products over four different continental in-situ measurements. Remote Sens 10(7):1161

    Article  Google Scholar 

  • Meesters AGCA, Dejeu RAM, Owe M et al (2005) Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett 2(2):121–123

    Article  Google Scholar 

  • Mironov VL, Kosolapova LG, Fomin SV et al (2009) Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Trans Geosci Remote Sens 47(7):2059–2070

    Article  Google Scholar 

  • Njoku EG, Li L (1999) Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Trans Geosci Remote Sens 37(1):79–93

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229

  • Njoku EG, Ashcroft P, Chan TK et al (2005) Global survey and statistics of radio-frequency interference in amsr-e land observations. IEEE Trans Geosci Remote Sens 43(5):938–947

    Article  Google Scholar 

  • Owe M, de Jeu R, Holmes T (2008) Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res 113(F1). https://doi.org/10.1029/2007JF000769

  • Parinussa RM, Wang G, Holmes TRH et al (2014) Global surface soil moisture from the microwave radiation imager on board the Fengyun-3B satellite. Int J Remote Sens 35(19):7007–7029

    Article  Google Scholar 

  • Saini R, Wang G, Pal JS (2016) Role of soil moisture feedback in the development of extreme summer drought and flood in the United States. J Hydrometeorol 17(8):2191–2207

    Article  Google Scholar 

  • Schmugge T, Gloersen P, Wilheit T et al (1974) Remote sensing of soil moisture with microwave radiometers. J Geophys Res 79(2):317–323

    Article  Google Scholar 

  • Shi JC, Jiang LM, Zhang LX et al (2005) A parameterized multifrequency-polarization surface emission model. IEEE Trans Geosci Remote Sens 43(12):2831–2841

    Article  Google Scholar 

  • Smith AB, Walker JP, Western AW, Young RI, Ellett KM, Pipunic RC, Grayson RB, Siriwardena L, Chiew FHS, Richter H (2012) The Murrumbidgee soil moisture monitoring network data set. Water Resour Res 48(7). https://doi.org/10.1029/2012WR011976

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophy Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Wagner W, Hahn S, Kidd R et al (2013) The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorol Z 22(1):5–33

    Article  Google Scholar 

  • Wang JR, Choudhury BJ (1981) Remote sensing of soil moisture content over bare field at 1.4 GHz frequency. J Geophys Res 86(C6)

  • Wigneron JP, Kerr Y, Waldteufel P et al (2007) L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens Environ 107(4):639–655

    Article  Google Scholar 

  • Yang J, Zhang P, Lu NM et al (2012) Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int J Digit Earth 5(3):251–265

    Article  Google Scholar 

  • Yee MS, Walker JP, Rüdiger C et al (2017) A comparison of SMOS and AMSR2 soil moisture using representative sites of the OzNet monitoring network. Remote Sens Environ 195:297–312

    Article  Google Scholar 

  • Zeng JY, Li Z, Chen Q et al (2015) Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan plateau using in-situ observations. Remote Sens Environ 163:91–110

    Article  Google Scholar 

  • Zhang XF, Zhang TT, Zhou P et al (2017) Validation analysis of SMAP and AMSR2 soil moisture products over the United States using ground-based measurements. Remote Sens 9(2):104

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (41501409), Natural Science Foundation of Shandong Province (ZR2015DL003). We are indebted to the European Space Agency (ESA), and the Centre Aval de Traitement des Données SMOS (CATDS), Goddard Geoscience Data and Information Service (GES DISC), Japan Aerospace Exploration Agency (JAXA), National Snow and Ice Data Center(NSIDC), NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments), University of Montana and CNSMC for providing the ESA CCI, SMOS, LPRM AMSR2, JAXA AMSR2, LPDR, SMAP,FY3B and FY3C soil moisture products, and the U.S. Department of Agriculture Agricultural Research Service and OzNet hydrological monitoring network for providing the in-situ data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Guo.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Guo, P., Li, X. et al. Assessment with remotely sensed soil moisture products and ground-based observations over three dense network. Earth Sci Inform 13, 663–679 (2020). https://doi.org/10.1007/s12145-020-00454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-020-00454-9

Keywords

Navigation