Skip to main content
Log in

Bifurcation of nonlinear normal modes of a cantilever beam under harmonic excitation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Bifurcation analysis of the nonlinear vibration of an inextensible cantilever beam is analyzed by using the nonlinear normal mode concept. Two flexural modes of the cantilever beam, one in each transverse plane is considered. Two degrees-of-freedom nonlinear model for the vibration in the transverse direction is obtained by the discretization of the governing equation using Galerkins method based on the eigenmodes in each direction. The method of multiple scales is used to derive two first-order nonlinear ordinary differential equations governing the modulation of the amplitude and the phase of the dominant mode for the case of 1:1 internal resonance. The bifurcation diagrams are computed considering the frequency of excitation and the magnitude of the excitation as the control parameters. The stability of the fixed point is determined by examining the eigenvalues of the Jacobian matrix. The results show that a saddle-node-type bifurcation of the solution can occur under certain parameter conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Agnes, G., Inman, D.: Performance of nonlinear vibration absorbers for multidegrees-of-freedom systems using nonlinear normal modes. Nonlinear Dyn. 25, 275292 (2001)

    Article  Google Scholar 

  2. Avramov, K., Mikhlin, V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65(2), 177–206 (2013)

    Article  Google Scholar 

  3. da Silva, Crespo, Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams—II: forced motions. J. Struct. Mech. 6, 449–461 (1978)

    Article  Google Scholar 

  4. da Silva, Crespo, Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams-I: equation of motion. J. Struct. Mech. 6(1–12), 437–448 (1978)

    Article  Google Scholar 

  5. Fengxia, W., Bajaj, A., Kamiya, K.: Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system. Nonlinear Dyn. 42(3), 233–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haider, A.: Nonlinear response of cantilever beams. Ph.D. thesis, Virginia Tech, Blacksburg, VA, USA (1999)

  7. Haider, A., Nayfeh, A., Chin, C.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15(1), 31–61 (1998)

    Article  MATH  Google Scholar 

  8. Hodges, D., Pierce, G.: Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  9. Huo, Y., Wang, Z.: Dynamical stability of the cantilever beam with oscillating length. Arch. Appl. Mech. 87(8), 1281–1293 (2017)

    Article  Google Scholar 

  10. Kerschen, G., Peeters, M., Golinval, J., Stéphan, C.: Nonlinear modal analysis of a full-scale aircraft. J. Aircr. 50(5), 1409–1419 (2013)

    Article  Google Scholar 

  11. Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  12. Kerschen, G., Shaw, S., Touzé, C., Gendelman, O., Cochelin, B., Vakakis, A.: Modal Analysis of Nonlinear Mechanical Systems. CIMS Book Series. Springer, Berlin (2014)

    Book  Google Scholar 

  13. King, M., Vakakis, A.: An energy-based formulation for computing nonlinear normal modes in undamped continuous systems. J. Vib. Acoust. 116(3), 332–340 (1994)

    Article  Google Scholar 

  14. Krack, M., Panning-von Scheidt, L., Wallaschek, J.: A method for nonlinear modal analysis and synthesis: application to harmonically forced and self-excited mechanical systems. J. Sound Vib. 332(25), 6798–6814 (2013)

    Article  Google Scholar 

  15. Kuether, R., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)

    Article  Google Scholar 

  16. Le, Y., Chen, H.: Bifurcation of nonlinear normal modes by means of Synge’s stability. In: ASME-International Design Engineering Technical Conferences, pp. 647–653 (2011)

  17. Lee, W., Lee, K., Pak, C.: Stability analysis for nonplanar free vibrations of a cantilever beam by using nonlinear normal modes. Nonlinear Dyn. 52(3), 217–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Ph.D. thesis, Virginia Tech, Blacksburg, VA, USA (2003)

  19. Manevitch, L., Mikhlin, Y., Pilipchuk, V., Vakakis, A.: Normal Modes and Localization in Nonlinear Systems. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  20. Nayfeh, A., Balachandran, B.: Modal interactions in dynamical and structural systems. J. Appl. Mech. 11, 175–201 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  22. Noël, J., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. 74, 95–110 (2016)

    Article  Google Scholar 

  23. Pak, C.: On the stability behavior of bifurcated normal modes in coupled nonlinear systems. J. Appl. Mech. 56(1), 155–161 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pak, C., Shin, H.: On bifurcation modes and forced responses in coupled nonlinear oscillators. J. Korea Soc. Ind. Appl. Math. 1(1), 29–67 (1995)

    Google Scholar 

  25. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  26. Rand, R., Pak, C., Vakakis, A.: Bifurcation of nonlinear normal modes in a class of two degree of freedom systems. Acta Mech. 3(1), 129–45 (1992)

    MATH  Google Scholar 

  27. Renson, L., Deliége, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49(8), 1901–1916 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)

    Article  Google Scholar 

  29. Renson, L., Noël, J., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 79(2), 1293–1309 (2015)

    Article  Google Scholar 

  30. Rosenberg, R.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  31. Shaw, S., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)

    Article  MATH  Google Scholar 

  32. Shaw, S., Pierre, C., Pesheck, E.: Modal analysis-based reduced-order models for nonlinear structures: an invariant manifold approach. Shock Vib. 96–1250, 385–405 (1999)

    Google Scholar 

  33. Thomsen, J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2013)

    Google Scholar 

  34. Tiaki, M., Hosseini, S., Zamanian, M.: Nonlinear forced vibrations analysis of overhung rotors with unbalanced disk. Arch. Appl. Mech. 86(5), 797–817 (2016)

    Article  Google Scholar 

  35. Vakakis, A.: Nonlinear normal modes and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997)

    Article  Google Scholar 

  36. Vakakis, A., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-I. Low energies. Int. J. Non-Linear Mech. 27(5), 861–874 (1992)

    Article  MATH  Google Scholar 

  37. Vakakis, A., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-II. High energies. Int. J. Non-Linear Mech. 27(5), 875–888 (1992)

    Article  MATH  Google Scholar 

  38. Xiaowu, F., Zhanming, Q.: Modal interactions in a geometrically nonlinear cantilevered beam. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 1–15 (2011)

  39. Xie, L., Baguet, S., Prabel, B., Dufour, R.: Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process. 88, 445–461 (2017)

    Article  Google Scholar 

  40. Yu, W., Chen, F., Li, N., Wang, T., Zhao, S.: Stability and bifurcation dynamics for a nonlinear controlled system subjected to parametric excitation. Arch. Appl. Mech. 87(3), 479–487 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokanna Hoskoti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoskoti, L., Misra, A. & Sucheendran, M.M. Bifurcation of nonlinear normal modes of a cantilever beam under harmonic excitation. Arch Appl Mech 90, 1247–1266 (2020). https://doi.org/10.1007/s00419-019-01647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01647-5

Keywords

Navigation