Skip to main content
Log in

Vibration analysis of the fully coupled nonlinear finite element model of composite drill strings

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In recent years to overcome many limitations of drilling operations, composite drill strings as high-tech rotors with complex dynamic behavior are under development. In this research, the fully coupled nonlinear vibration of composite drill strings, which consist of orthotropic layers, is investigated using the Lagrangian approach and the finite element method. In addition to the main nonlinear terms and particularly the geometric stiffening effect, which resulted from the interaction of the drill string weight and the axial bit force, the gyroscopic effect has also been taken into account. The analysis ability of the dynamic model, which is intended to furnish a basic model for the further development of a more comprehensive model, is examined. The fully coupled nonlinear vibrations and modal analysis of the composite drill strings due to various fiber orientations and stacking sequences in the different drilling conditions are studied, and are compared with the steel drill string.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Finnie, I., Bailey, J.J.: An experimental study of drill-string vibration. J. Eng. Ind. ASME Trans. 82(2), 129–135 (1960)

    Article  Google Scholar 

  2. Bailey, J.J., Finnie, I.: An analytical study of drill-string vibration. J. Eng. Ind. ASME Trans. 82(2), 122–128 (1960)

    Article  Google Scholar 

  3. Kreisle, L.F., Vance, J.M.: Mathematical analysis of the effect of shock sub on the longitudinal vibrations of an oilwell drill string. SPE 10, 349–356 (1970)

    Article  Google Scholar 

  4. Wolf, S.F., Zacksenhouse, M., Arian, A.: Field measurements of downhole drillstring vibrations, Paper SPE-14330, Proceedings of the Annual Technical Conference & Exhibition, Las Vegas, NV, (1985)

  5. Jansen, J.D.: Nonlinear rotor dynamics as applied to oilwell drillstring vibrations. J. Sound Vib. 147(1), 115–135 (1991)

    Article  Google Scholar 

  6. Yigit, A.S., Christoforou, A.P.: Coupled axial and transverse vibrations of oilwell drill strings. J. Sound Vib. 195(2), 617–627 (1996)

    Article  Google Scholar 

  7. Yigit, A.S., Christoforou, A.P.: Coupled torsional and bending vibrations of drillstrings subject to impact with friction. J. Sound Vib. 215(1), 167–181 (1998)

    Article  Google Scholar 

  8. Jogi, P.N., Macpherson, J.D., Neubert, M.: Field verification of model-derived naturalfrequencies of a drill string. J. Energy Resour. Technol. 124(1), 154–162 (2002)

    Article  Google Scholar 

  9. Spanos, P.D., Chevallier, A.M., Politis, N.P.: Nonlinear stochastic drill-string vibrations. J. Appl. Mech. ASME Trans. 124, 512–518 (2002)

    Google Scholar 

  10. Khulief, Y.A., Al-Naser, H.: Finite element dynamic analysis of drillstrings. Finite Elem. Anal. Des. 41, 1270–1288 (2005)

    Article  Google Scholar 

  11. Sampaio, R., Piovan, M.T., Lozano, G.Venero: Coupled axial/torsional vibrations of drill-strings by means of non-linear model. Mech. Res. Commun. 34, 497–502 (2007)

    Article  Google Scholar 

  12. Liao, C.M., Balachandran, B., Karkoub, M., Abdel-Magid, Y.L.: Drill-string dynamics: reduced-order models and experimental studies. J. Vib. Acoust. ASME Trans. 133, 0410081–6 (2011)

    Article  Google Scholar 

  13. Ghasemloonia, A., Rideout, D.G., Butt, S.D.: Vibration analysis of a drillstring in vibration-assisted rotary drilling: finite element modeling with analytical validation. J. Energy Resour. Technol. 135(1), 0329021–18 (2013)

    Google Scholar 

  14. Qiu, H., Yang, J., Butt, S., Zhong, J.: Investigation on random vibration of a drillstring. J. Sound Vib. 406, 74–88 (2017)

    Article  Google Scholar 

  15. Singh, S.P., Gupta, K.: Rotordynamic experiments on composite shafts. ASTM J. Compos. Technol. Res. 18(2), 256–264 (1996)

    Google Scholar 

  16. Gupta, K., Singh, S.P.: Damping measurements in fiber reinforced composite rotors. J. Sound Vib. 211(1), 513–520 (1998)

    Article  Google Scholar 

  17. Wettergren, H.L.: Influence of imperfections on the eigenfrequencies of a rotating composite shaft. J. Sound Vib. 204(1), 99–116 (1997)

    Article  Google Scholar 

  18. Kim, W., Argento, A., Scott, R.A.: Free vibration of a rotating tapered composite Timoshenko shaft. J. Sound Vib. 226(1), 125–147 (1999)

    Article  Google Scholar 

  19. Bang, K.G., Lee, D.G.: Design of carbon fiber composite shafts for high speed air spindles. Compos. Struct. 55, 247–259 (2002)

    Article  Google Scholar 

  20. Chang, C.Y., Chang, M.Y., Huang, J.H.: Vibration analysis of rotating composite shafts containing randomly oriented reinforcements. Compos. Struct. 63, 21–32 (2004)

    Article  Google Scholar 

  21. Gubran, H.B.H., Gupta, K.: The effect of stacking sequence and coupling mechanisms on the natural frequencies of composite shafts. J. Sound Vib. 282, 231–248 (2005)

    Article  Google Scholar 

  22. Sino, R., Baranger, T.N., Chatelet, E., Jaquet-Richardet, G.: Dynamic analysis of a rotating composite shaft. Compos. Sci. Technol. 68, 337–345 (2008)

    Article  Google Scholar 

  23. Leslie, J.C., Heard, J.T., Truong, L.: Advances in Composite Drilling Components Lead to Evaluation for Critical E&P Applications. Advanced Composite Products and Technology Inc, Huntington Beach (2007)

    Google Scholar 

  24. Chen, L.W., Peng, W.K.: The stability behavior of rotating composite shaft under axial compressive loads. Compos. Struct. 41, 253–263 (1998)

    Article  Google Scholar 

  25. Chang, M.Y., Chen, J.K., Chang, C.Y.: A simple spinning laminated composite shaft model. Int. J. Solids Struct. 41, 637–662 (2004)

    Article  Google Scholar 

  26. Calim, F.F.: Free and forced vibrations of non-uniform composite beams. Compos. Struct. 88, 413–423 (2009)

    Article  Google Scholar 

  27. Boukhalfa, A., Hadjoui, A.: Free vibration analysis of an embarked rotating composite shaft using the hp-version of the FEM. Latin Am. J. Solids Struct. 7, 105–141 (2010)

    Article  Google Scholar 

  28. Mohebpour, S.R., Fiouz, A.R., Ahmadzadeh, A.A.: Dynamic investigation of laminated composite beams with shear and rotary inertia effect subjected to the moving oscillators using FEM. Compos. Struct. 93, 1118–1126 (2011)

    Article  Google Scholar 

  29. Arab, S.B., Rodrigues, J.D., Bouaziz, S., Haddar, M.: A finite element based on equivalent single layer theory for rotating composite shafts dynamic analysis. Compos. Struct. 178, 135–144 (2017)

    Article  Google Scholar 

  30. Bazoune, A., Khulief, Y.A., Stephen, N.G.: Shape functions of three-dimensional Timoshenko beam element. J. Sound Vib. 259(2), 473–480 (2003)

    Article  Google Scholar 

  31. Su, Y.Y., Gao, K.L.: Analytical model for adhesively bonded composite panel-flange joints based on the Timoshenko beam theory. Compos. Struct. 107, 112–118 (2014)

    Article  Google Scholar 

  32. Jones, R.M.: Mechanics of Composite Materials, 2nd edn. Taylor & Francis Inc., New York (1999)

    Google Scholar 

  33. Likens, P., Barbera, F., Baddeley, V.: Mathematical modeling of spinning elastic bodies for modal analysis. J. Am. Inst. Aeronaut. Astronaut. 11(7), 1251–1258 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shahgholi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix, Data used in the simulation

Appendix, Data used in the simulation

  • Length of the drill string \(=\) 1600 m,

  • Length of the drill pipes \(=\) 1400 m,

  • Length of the drill collars \(=\) 200 m,

  • Outside diameter of the drill pipe \(=\) 0.1524 m,

  • Outside diameter of the drill collar \(=\) 0.2743 m,

  • Inside diameter of the drill pipe \(=\) 0.127 m,

  • Inside diameter of the drill collar \(=\) 0.1062 m,

  • Density of the composite drill string \(=\) 3930 kg/m\(^{\mathrm{3}}\),

  • E\(_{\mathrm{1}}=\)141.343 Gpa (Young’s modulus in the 1-direction),

  • E\(_{\mathrm{2}}=\) 9.563 Gpa (Young’s modulus in the 2-direction),

  • E\(_{\mathrm{3}}=\) 9.563 Gpa (Young’s modulus in the 3-direction),

  • G\(_{\mathrm{12}}=\) 4.55 Gpa (Shear modulus in the 1–2 plane),

  • G\(_{\mathrm{13}}=\) 4.55 Gpa (Shear modulus in the 1–3 plane),

  • G\(_{\mathrm{23}}=\) 2.85 Gpa (Shear modulus in the 2–3 plane),

  • \({\upnu }_{\mathrm{12}}=0\).28 (Poisson’s ratio),

  • \({\upnu }_{\mathrm{13}}=0\).28 (Poisson’s ratio),

  • \({\upnu }_{\mathrm{23}}=0\).517 (Poisson’s ratio),

  • Impulsive force \(=\) 1e5 N, at \(t = 1{\text {e}}-5\) s,

  • Impulsive torque \(=\) 1e6 N m, at \(t = 1{\text {e}}-5\) s,

  • \(\partial \varPhi /\partial t=6\) Rad/s (Constant angular velocity of the drill string).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, M., Shahgholi, M., Arbabtafti, M. et al. Vibration analysis of the fully coupled nonlinear finite element model of composite drill strings. Arch Appl Mech 90, 1373–1398 (2020). https://doi.org/10.1007/s00419-020-01673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01673-8

Keywords

Navigation