Skip to main content
Log in

Modelling and analysis of a cracked rotor: a review of the literature and its implications

  • Review
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Timely detection of fatigue cracks is necessary to avoid catastrophic failure of rotating machines which can lead to economical losses and accidental risk. This paper presents an exhaustive literature survey on theoretical and experimental vibration analysis of the rotating shaft in the presence of crack. Various non-destructive methods adopted by several researchers for crack detection in rotating machinery have been discussed. The vibration-based crack detection methods such as vibration-based diagnostics methods and vibration-based signal processing techniques have been broadly categorized along with their advantages and disadvantages. In general, various methodologies such as breathing mechanism, finite-element method, Hilbert–Huang transform, artificial intelligence techniques, wavelet transform and wavelet finite-element transform have been applied to investigate the presence of crack in the rotating shaft. The parameters such as natural frequencies, \(1{\times }\), \(2{\times }\) and \(3{\times }\) harmonic components of dynamic response, critical speeds and whirl orbits have been significantly influenced due to the presence of crack in the rotating shaft. Several studies have been carried out to study variations in these parameters. Still, there is a need of more reliable and accurate modelling approach to detect variations in these parameters. In this paper, an attempt has been made to deliver all the modelling approaches implemented by the various researchers to detect crack within the rotating shaft. The modelling approaches are categorized based on the methodologies adopted by the various researchers to detect crack. Moreover, the critical observations made from the proposed modelling approaches are summarized and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdi, H., Nayeb-Hashemi, H., Hamouda, A.M., Vaziri, A.: Torsional dynamic response of a shaft with longitudinal and circumferential cracks. J. Vib. Acoust. 136(6), 061011 (2014). https://doi.org/10.1115/1.4028609

    Article  Google Scholar 

  2. Nabian, M., Vaziri, A., Olia, M., Nayeb-Hashemi, H.: The effects of longitudinal and circumferential cracks on the torsional dynamic response of shafts. In: ASME 2013 International Mechanical Engineering Congress and Exposition 2014 April 2. ASME Paper No. IMECE2013-65593. https://doi.org/10.1115/IMECE2013-65593 (2014)

  3. Darpe, A.K.: Coupled vibrations of a rotor with slant crack. J. Sound Vib. 305(1–2), 172–193 (2007). https://doi.org/10.1016/j.jsv.2007.03.079

    Article  Google Scholar 

  4. Sekhar, A.S., Prasad, P.B.: Dynamic analysis of a rotor system considering a slant crack in the shaft. J. Sound Vib. 208(3), 457–474 (1997). https://doi.org/10.1006/jsvi.1997.1222

    Article  Google Scholar 

  5. Prabhakar, S., Sekhar, A.S., Mohanty, A.R.: Transient lateral analysis of a slant-cracked rotor passing through its flexural critical speed. Mech. Mach. Theory 37(9), 1007–1020 (2002). https://doi.org/10.1016/s0094-114x(02)00020-4

    Article  MATH  Google Scholar 

  6. Ramezanpour, R., Ghayour, M., Ziaei-Rad, S.: A novel method for slant crack detection in rotors based on turning in two directions. Arch. Appl. Mech. 83, 783–798 (2013). https://doi.org/10.1007/s00419-012-0717-2

    Article  MATH  Google Scholar 

  7. Darpe, A.K.: Dynamics of a Jeffcott rotor with slant crack. J. Sound Vib. 303(1–2), 1–28 (2007). https://doi.org/10.1016/j.jsv.2006.07.052

    Article  Google Scholar 

  8. Ichimonji, M., Watanabe, S.: The dynamics of a rotor system with a shaft having a slant crack: a qualitative analysis using a simple rotor model. JSME Int. J. 31(4), 712–718 (1988). https://doi.org/10.1299/jsmec1988.31.712

    Article  Google Scholar 

  9. Sabnavis, G., Kirk, R.G., Kasarda, M., Quinn, D.: Cracked shaft detection and diagnostics: a literature review. Shock Vib. Dig. 36(4), 287–297 (2004). https://doi.org/10.1177/0583102404045439

    Article  Google Scholar 

  10. Dirr, B.O., Popp, K., Rothkegel, W.H.: Detection and simulation of small transverse cracks in rotating shafts. Arch. Appl. Mech. 64, 206–222 (1994). https://doi.org/10.1007/BF00806818

    Article  Google Scholar 

  11. Pennacchi, P., Bachschmid, N., Vania, A.: A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mech. Syst. Signal Process. 20(8), 2112–2147 (2006). https://doi.org/10.1016/j.ymssp.2005.04.005

    Article  Google Scholar 

  12. Gasch, R.: Dynamic behaviour of the Laval rotor with a transverse crack. Mech. Syst. Signal Process. 22(4), 790–804 (2008). https://doi.org/10.1016/j.ymssp.2007.11.023

    Article  Google Scholar 

  13. Bachschmid, N., Pennacchi, P., Tanzi, E.: Some remarks on breathing mechanism, on non-linear effects and on slant and helicoidal cracks. Mech. Syst. Signal Process. 22(4), 879–904 (2008). https://doi.org/10.1016/j.ymssp.2007.11.007

    Article  Google Scholar 

  14. Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with a breathing crack. J. Sound Vib. 155(2), 273–290 (1992). https://doi.org/10.1016/0022-460x(92)90511-u

    Article  MATH  Google Scholar 

  15. Al-Shudeifat, M.A., Butcher, E.A.: On the modeling of open and breathing cracks of a cracked rotor system. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME Paper No. DETC2010-28289, pp. 919–928 (2011). https://doi.org/10.1115/DETC2010-28289

  16. Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160(2), 313–332 (1993). https://doi.org/10.1006/jsvi.1993.1026

    Article  MATH  Google Scholar 

  17. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996). https://doi.org/10.1016/0013-7944(94)00175-8

    Article  Google Scholar 

  18. Wauer, J.: On the dynamics of cracked rotors: a literature survey. Appl. Mech. Rev. 43(1), 13–17 (1990). https://doi.org/10.1115/1.3119157

    Article  Google Scholar 

  19. Kumar, C., Rastogi, V.: A brief review on dynamics of a cracked rotor. Int. J. Rotat. Mach. 2009(2), 1–6 (2009). https://doi.org/10.1155/2009/758108

    Article  Google Scholar 

  20. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011). https://doi.org/10.1177/1475921710365419

    Article  Google Scholar 

  21. Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998). https://doi.org/10.1177/058310249803000201

    Article  Google Scholar 

  22. Carden, E.P., Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. 3(4), 355–377 (2004). https://doi.org/10.1177/1475921704047500

    Article  Google Scholar 

  23. Sekhar, A.S.: Identification of unbalance and crack acting simultaneously in a rotor system: modal expansion versus reduced basis dynamic expansion. J. Vib. Control 11(9), 1125–1145 (2005). https://doi.org/10.1177/1077546305042531

    Article  MATH  Google Scholar 

  24. Guo, C.Z., Yan, J.H., Bergman, L.A.: Experimental dynamic analysis of a breathing cracked rotor. Chin. J. Mech. Eng. 30(5), 1177–83 (2017). https://doi.org/10.1007/s10033-017-0180-7

    Article  Google Scholar 

  25. Yang, H., Mathew, J., Ma, L. (2003) Vibration feature extraction techniques for fault diagnosis of rotating machinery: a literature survey. In: Asia-Pacific Vibration Conference, November 12–14, pp. 801–807. Gold Coast, Australia (2003)

  26. Guo, C., Al-Shudeifat, M.A., Yan, J., Bergman, L.A., McFarland, D.M., Butcher, E.A.: Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack. J. Sound Vib. 332(16), 3881–3892 (2013). https://doi.org/10.1016/j.jsv.2013.02.031

    Article  Google Scholar 

  27. Pilkey, W.D.: Analysis and Design of Elastic Beams, vol. 2002, pp. 24–29. Wiley, New York (2002)

    Book  Google Scholar 

  28. Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311(3–5), 953–972 (2008). https://doi.org/10.1016/j.jsv.2007.09.033

    Article  Google Scholar 

  29. Mobarak, H.M., Wu, H., Spagnol, J.P., Xiao, K.: New crack breathing mechanism under the influence of unbalance force. Arch. Appl. Mech. 88(3), 341–372 (2018). https://doi.org/10.1007/s00419-017-1312-3

    Article  Google Scholar 

  30. Xie, J., Cheng, W., Zi, Y.: Modified breathing mechanism model and phase waterfall plot diagnostic method for cracked rotors. J. Mech. Sci. Technol. 32(6), 2527–2539 (2018). https://doi.org/10.1007/s12206-018-0510-4

    Article  Google Scholar 

  31. Georgantzinos, S.K., Anifantis, N.K.: An insight into the breathing mechanism of a crack in a rotating shaft. J. Sound Vib. 318(1–2), 279–295 (2008). https://doi.org/10.1016/j.jsv.2008.04.010

    Article  Google Scholar 

  32. Al-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked rotor system: approach for critical and subcritical harmonic analysis. J. Sound Vib. 330(3), 526–544 (2011). https://doi.org/10.1016/j.jsv.2010.08.022

    Article  Google Scholar 

  33. Guo, C., Al-Shudeifat, M.A., Yan, J., Bergman, L.A., McFarland, D.M., Butcher, E.A.: Stability analysis for transverse breathing cracks in rotor systems. Eur. J. Mech. A/Solids 42, 27–34 (2013). https://doi.org/10.1016/j.euromechsol.2013.04.001

    Article  MathSciNet  MATH  Google Scholar 

  34. De Oliveira, L.R., De Melo, G.P.: Crack detection and dynamic analysis of a cracked rotor with soft bearings using different methods of solution. In: International Conference on Rotor Dynamics, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99268-6_1

  35. Hossain, M., Wu, H.: Crack breathing behavior of unbalanced rotor system: a quasi-static numerical analysis. J. Vibroeng. 20(3), 1459–1469 (2018). https://doi.org/10.21595/jve.2018.19692

    Article  Google Scholar 

  36. Zhang, B., Li, Y.: Six degrees of freedom coupled dynamic response of rotor with a transverse breathing crack. Nonlinear Dyn. 78(3), 1843–1861 (2014). https://doi.org/10.1007/s11071-014-1563-2

    Article  Google Scholar 

  37. Mayes, I.W., Davies, W.G.: Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. J. Vib. Acoust. Stress Reliab. Des. 106(1), 139–145 (1984). https://doi.org/10.1115/1.3269142

    Article  Google Scholar 

  38. Wauer, J.: Modelling and formulation of equations of motion for cracked rotating shafts. Int. J. Solids Struct. 26(8), 901–914 (1990). https://doi.org/10.1016/0020-7683(90)90076-8

    Article  MATH  Google Scholar 

  39. Dimarogonas, A.D., Papadopoulos, C.A.: Vibration of cracked shafts in bending. J. Sound Vib. 91(4), 583–593 (1983). https://doi.org/10.1016/0022-460x(83)90834-9

    Article  MATH  Google Scholar 

  40. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib. 117(1), 81–93 (1987). https://doi.org/10.1016/0022-460x(87)90437-8

    Article  Google Scholar 

  41. Al-Shudeifat, M.A.: On the finite element modeling of the asymmetric cracked rotor. J. Sound Vib. 332(11), 2795–2807 (2013). https://doi.org/10.1016/j.jsv.2012.12.026

    Article  Google Scholar 

  42. AL-Shudeifat, M.A.: Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness. J. Sound Vib. 348, 365–380 (2015). https://doi.org/10.1016/j.jsv.2015.03.007

    Article  Google Scholar 

  43. Wu, X., Sawicki, J.T., Friswell, M.I., Baaklini, G.Y.: Finite element analysis of coupled lateral and torsional vibrations of a rotor with multiple cracks. In: ASME Turbo Expo 2005: Power for Land, Sea, and Air, ASME Paper No. GT2005-68839, pp. 841–850 (2005). https://doi.org/10.1115/GT2005-68839

  44. Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269(1–2), 33–60 (2004). https://doi.org/10.1016/s0022-460x(03)00003-8

    Article  Google Scholar 

  45. Darpe, A.K.: A novel way to detect transverse surface crack in a rotating shaft. J. Sound Vib. 305(1–2), 151–171 (2007). https://doi.org/10.1016/j.jsv.2007.03.070

    Article  Google Scholar 

  46. Haji, Z.N., Oyadiji, S.O.: The use of roving discs and orthogonal natural frequencies for crack identification and location in rotors. J. Sound Vib. 333(23), 6237–6257 (2014). https://doi.org/10.1016/j.jsv.2014.05.046

    Article  Google Scholar 

  47. Haji, Z.N., Oyadiji, S.O.: Detection of cracks in stationary rotors via the modal frequency changes induced by a roving disc. In: Proceedings of the ASME 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA2014, June 25–27, 2014, Copenhagen, Denmark. ASME Paper No. ESDA2014-20611 (2014). https://doi.org/10.1115/ESDA2014-20611

  48. Sinou, J.J., Lees, A.W.: The influence of cracks in rotating shafts. J. Sound Vib. 285(4–5), 1015–1037 (2007). https://doi.org/10.1016/j.jsv.2004.09.008

    Article  Google Scholar 

  49. Sinou, J.J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. A/Solids 26(1), 152–170 (2007). https://doi.org/10.1016/j.euromechsol.2006.04.002

    Article  MATH  Google Scholar 

  50. Sinou, J.J.: Detection of cracks in rotor based on the \(2\times \) and \(3\times \) super-harmonic frequency components and the crack–unbalance interactions. Commun. Nonlinear Sci. Numer. Simul. 13(9), 2024–2040 (2008). https://doi.org/10.1016/j.cnsns.2007.04.008

    Article  Google Scholar 

  51. Upadhyay, D.K., Satankar, R.K.: Dynamic analysis of a cracked rotor bearing disc system-finite element investigation. Glob. J. Eng. Sci. Res. 4(8), 86–95 (2017). https://doi.org/10.5281/zenodo.847606

    Article  Google Scholar 

  52. Khorrami, H., Rakheja, S., Sedaghati, R.: Vibration behavior of a two-crack shaft in a rotor disc-bearing system. Mech. Mach. Theory 113, 67–84 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.03.006

    Article  Google Scholar 

  53. Ghozlane, M.: Dynamic response of cracked shaft in rotor bearing-disk system. In: Design and Modeling of Mechanical Systems—II, pp. 615–624. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17527-0_61

  54. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  55. Peng, Z.K., Peter, W.T., Chu, F.L.: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 19(5), 974–988 (2005). https://doi.org/10.1016/j.ymssp.2004.01.006

    Article  Google Scholar 

  56. Guo, D., Peng, Z.K.: Vibration analysis of a cracked rotor using Hilbert–Huang transform. Mech. Syst. Signal Process. 21(8), 3030–3041 (2007). https://doi.org/10.1016/j.ymssp.2007.05.004

    Article  Google Scholar 

  57. Jiao, W., Yang, S., Chang, Y., Yan, G., Hu, J.: Detecting a cracked rotor with HHT-based time-frequency representation. In: IEEE International Conference on Automation and Logistics, pp. 790–793 (2008). https://doi.org/10.1109/ICAL.2008.4636257

  58. Li, B., Zhang, C., He, Z.: HHT-based crack identification method for start-up rotor. Front. Mech. Eng. 7(3), 300–304 (2012). https://doi.org/10.1007/s11465-012-0328-1

    Article  Google Scholar 

  59. Babu, T.R., Srikanth, S., Sekhar, A.S.: Hilbert–Huang transform for detection and monitoring of crack in a transient rotor. Mech. Syst. Signal Process. 22(4), 905–914 (2008). https://doi.org/10.1016/j.ymssp.2007.10.010

    Article  Google Scholar 

  60. Feldman, M.: Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295(3–5), 518–530 (2006). https://doi.org/10.1016/j.jsv.2005.12.058

    Article  MATH  Google Scholar 

  61. Lin, L., Chu, F.: HHT-based AE characteristics of natural fatigue cracks in rotating shafts. Mech. Syst. Signal Process. 26, 181–189 (2012). https://doi.org/10.1016/j.ymssp.2011.07.017

    Article  Google Scholar 

  62. Chandra, N.H., Sekhar, A.S.: Fault detection in rotor bearing systems using time frequency techniques. Mech. Syst. Signal Process. 72, 105–133 (2016). https://doi.org/10.1016/j.ymssp.2015.11.013

    Article  Google Scholar 

  63. Liu, J., Liu, W., Wang, X.: Research of crack detection and delay crack propagation on a nonlinear rotor. Strojniski Vestnik/J. Mech. Eng. 64(10), 601–610 (2018). https://doi.org/10.5545/sv-jme.2018.5242

    Article  Google Scholar 

  64. Peng, Z.K., Chu, F.L.: Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech. Syst. Signal Process. 18(2), 199–221 (2004). https://doi.org/10.1016/s0888-3270(03)00075-x

    Article  Google Scholar 

  65. Zhong, S., Oyadiji, S.O.: Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mech. Syst. Signal Process. 21(4), 1853–1884 (2007). https://doi.org/10.1016/j.ymssp.2006.07.007

    Article  Google Scholar 

  66. Zhong, S., Oyadiji, S.O.: Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data. Comput. Struct. 89(1–2), 127–148 (2011). https://doi.org/10.1016/j.compstruc.2010.08.008

    Article  Google Scholar 

  67. Jiang, Y.Y., Li, B., Zhang, Z.S., Chen, X.F.: Identification of crack location in beam structures using wavelet transform and fractal dimension. Shock Vib. 2015, 1–10 (2015). https://doi.org/10.1155/2015/832763

    Article  Google Scholar 

  68. Mogal, S.P., Lalwani, D.I.: A brief review on fault diagnosis of rotating machineries. Appl. Mech. Mater. 541, 635–640 (2014). https://doi.org/10.4028/www.scientific.net/amm.541-542.635

    Article  Google Scholar 

  69. Gómez, M.J., Castejón, C., García-Prada, J.C.: Review of recent advances in the application of the wavelet transform to diagnose cracked rotors. Algorithms 9(1), 19 (2016). https://doi.org/10.3390/a9010019

    Article  MATH  Google Scholar 

  70. Gómez, M.J., Castejón, C., García-Prada, J.C.: Crack detection in rotating shafts based on 3X energy: analytical and experimental analyses. Mech. Mach. Theory 96, 94–106 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.09.009

    Article  Google Scholar 

  71. Huo, Z., Zhang, Y., Zhou, Z., Huang, J.: Crack detection in rotating shafts using wavelet analysis, Shannon entropy and multi-class SVM. In: International Conference on Industrial Networks and Intelligent Systems, pp. 332–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-74176-5_29

  72. Soeffker, D., Wei, C., Wolff, S., Saadawia, M.S.: Detection of rotor cracks: comparison of an old model-based approach with a new signal-based approach. Nonlinear Dyn. 83(3), 1153–1170 (2016). https://doi.org/10.1007/s11071-015-2394-5

    Article  Google Scholar 

  73. Ma, J., Xue, J., Yang, S., He, Z.: A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elem. Anal. Des. 39(10), 965–975 (2003). https://doi.org/10.1016/s0168-874x(02)00141-5

    Article  Google Scholar 

  74. Chen, X., Yang, S., Ma, J., He, Z.: The construction of wavelet finite element and its application. Finite Elem. Anal. Des. 40(5–6), 541–554 (2004). https://doi.org/10.1016/s0168-874x(03)00077-5

    Article  Google Scholar 

  75. Xiang, J.W., Chen, X.F., Li, B., He, Y.M., He, Z.J.: Identification of a crack in a beam based on the finite element method of a B-spline wavelet on the interval. J. Sound Vib. 296(4–5), 1046–1052 (2006). https://doi.org/10.1016/j.jsv.2006.02.019

    Article  Google Scholar 

  76. Xiang, J., Chen, X., Mo, Q., He, Z.: Identification of crack in a rotor system based on wavelet finite element method. Finite Elem. Anal. Des. 43(14), 1068–1081 (2007). https://doi.org/10.1016/j.finel.2007.07.001

    Article  Google Scholar 

  77. Li, B., Dong, H.: Quantitative identification of multiple cracks in a rotor utilizing wavelet finite element method. Comput. Model. Eng. Sci. (CMES) 84(3), 205–228 (2012). https://doi.org/10.3970/cmes.2012.084.205

    Article  Google Scholar 

  78. Gomez-Mancilla, J., Sinou, J.J., Nosov, V.R., Thouverez, F., Zambrano, A.: The influence of crack–imbalance orientation and orbital evolution for an extended cracked Jeffcott rotor. C. R. Mec. 332(12), 955–962 (2004). https://doi.org/10.1016/j.crme.2004.09.007

    Article  MATH  Google Scholar 

  79. Karaagac, C., Öztürk, H., Sabuncu, M.: Free vibration and lateral buckling of a cantilever slender beam with an edge crack: experimental and numerical studies. J. Sound Vib. 326(1–2), 235–250 (2009). https://doi.org/10.1016/j.jsv.2009.04.022

    Article  Google Scholar 

  80. Stoisser, C.M., Audebert, S.A.: Comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mech. Syst. Signal Process. 22(4), 818–844 (2008). https://doi.org/10.1016/j.ymssp.2007.11.013

    Article  Google Scholar 

  81. Machorro-López, J.M., Adams, D.E., Gómez-Mancilla, J.C., Gul, K.A.: Identification of damaged shafts using active sensing—simulation and experimentation. J. Sound Vib. 327(3–5), 368–390 (2009). https://doi.org/10.1016/j.jsv.2009.06.025

    Article  Google Scholar 

  82. Bennoud, S., Zergoug, M., Allali, A.: Numerical simulation for cracks detection using the finite elements method. Int. J. Multiphys. 8(1), 1–10 (2016). https://doi.org/10.1260/1750-9548.8.1.1

    Article  Google Scholar 

  83. Jain, A.K., Rastogi, V., Agrawal, A.K.: Experimental investigation of vibration analysis of multi-crack rotor shaft. Proc. Eng. 144, 1451–1458 (2016). https://doi.org/10.1016/j.proeng.2016.05.177

    Article  Google Scholar 

  84. Saravanan, K., Sekhar, A.S.: Crack detection in a rotor by operational deflection shape and kurtosis using laser vibrometer measurements. J. Vib. Control 19(8), 1227–1239 (2013). https://doi.org/10.1177/1077546312444770

    Article  Google Scholar 

  85. Fu, C., Ren, X., Yang, Y., Lu, K., Wang, Y.: Nonlinear response analysis of a rotor system with a transverse breathing crack under interval uncertainties. Int. J. Nonlinear Mech. 105, 77–87 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.07.001

    Article  Google Scholar 

  86. Kumar, C., Rastogi, V., Singh, N.B.: Dynamic modeling and simulation of transverse cracks in rotating shafts through dissipative coupling. Simulation 88(10), 1260–1276 (2012). https://doi.org/10.1177/0037549712450344

    Article  Google Scholar 

  87. Müller, P.C., Bajkowski, J., Söffker, D.: Chaotic motions and fault detection in a cracked rotor. Nonlinear Dyn. 5(2), 233–254 (1994). https://doi.org/10.1007/BF00045678

    Article  Google Scholar 

  88. Ishida, Y., Inoue, T.: Detection of a rotor crack using a harmonic excitation and nonlinear vibration analysis. J. Vib. Acoust. 128(6), 741–749 (2006). https://doi.org/10.1115/1.2346693

    Article  Google Scholar 

  89. Qin, W., Chen, G., Ren, X.: Grazing bifurcation in the response of cracked Jeffcott rotor. Nonlinear Dyn. 35(2), 147–157 (2004). https://doi.org/10.1023/b:nody.0000020959.82954.45

    Article  MATH  Google Scholar 

  90. Wang, X., Liu, J., Ge, W.: A practical method to detect a transverse cracked rotor using transient response. Strojniški vestnik/J. Mech. Eng. 63(6), 394–404 (2017). https://doi.org/10.5545/sv-jme.2017.4332

    Article  Google Scholar 

  91. Wang, X., Liu, J., Ge, W.: Detection of a transverse crack in a nonlinear rotor using non-stationary response. J. Vibroeng. 19(7), 4953–4964 (2017). https://doi.org/10.21595/jve.2017.18186

    Article  Google Scholar 

  92. Wang, S., Zi, Y., Qian, S., Zi, B., Bi, C.: Effects of unbalance on the nonlinear dynamics of rotors with transverse cracks. Nonlinear Dyn. 91(4), 2755–2772 (2018). https://doi.org/10.1007/s11071-017-4044-6

    Article  Google Scholar 

  93. Zhou, T., Sun, Z., Xu, J., Han, W.: Experimental analysis of cracked rotor. J. Dyn. Syst. Meas. Control 127(3), 313–320 (2005). https://doi.org/10.1115/1.1978908

    Article  Google Scholar 

  94. Zhu, C., Robb, D.A., Ewins, D.J.: The dynamics of a cracked rotor with an active magnetic bearing. J. Sound Vib. 265(3), 469–487 (2003). https://doi.org/10.1016/s0022-460x(03)00174-3

    Article  Google Scholar 

  95. Cao, J., Xue, S., Lin, J., Chen, Y.: Nonlinear dynamic analysis of a cracked rotor-bearing system with fractional order damping. J. Comput. Nonlinear Dyn. 8(3), 031008-1–14 (2013). https://doi.org/10.1115/1.4023010

    Article  Google Scholar 

  96. Thatoi, D.N., Nanda, J., Das, H.C., Parhi, D.R.: Analysis of the dynamic response of a cracked beam structure. Appl. Mech. Mater. 187, 58–62 (2012). https://doi.org/10.4028/www.scientific.net/amm.187.58

    Article  Google Scholar 

  97. Hou, L., Chen, Y.: Super-harmonic responses analysis for a cracked rotor system considering inertial excitation. Sci. China Technol. Sci. 58(11), 1924–1934 (2015). https://doi.org/10.1007/s11431-015-5850-z

    Article  Google Scholar 

  98. Chen, X.: Nonlinear responses analysis caused by slant crack in a rotor-bearing system. J. Vibroeng. 18(7), 4369–4387 (2016). https://doi.org/10.21595/jve.2016.16921

    Article  Google Scholar 

  99. Bovsunovskii, A.P.: On determination of the natural frequency of transverse and longitudinal vibrations of a cracked beam. Part 1. Analytical approach. Strength Mater. 31(2), 130–137 (1999). https://doi.org/10.1007/BF02511102

    Article  Google Scholar 

  100. El Arem, S., Zid, M.B.: On a systematic approach for cracked rotating shaft study: breathing mechanism, dynamics and instability. Nonlinear Dyn. 88(3), 2123–2138 (2017). https://doi.org/10.1007/s11071-017-3367-7

    Article  Google Scholar 

  101. El Arem, S.: Nonlinear analysis, instability and routes to chaos of a cracked rotating shaft. Nonlinear Dyn. 96(1), 667–683 (2019). https://doi.org/10.1007/s11071-019-04813-0

    Article  Google Scholar 

  102. He, Y., Guo, D., Chu, F.: Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system. Math. Comput. Simul. 57(1–2), 95–108 (2001). https://doi.org/10.1016/s0378-4754(01)00295-6

    Article  MathSciNet  MATH  Google Scholar 

  103. Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H., Ettefagh, M.M.: Crack detection in beam-like structures using genetic algorithms. Appl. Soft Comput. 8(2), 1150–1160 (2008). https://doi.org/10.1016/j.asoc.2007.10.003

    Article  Google Scholar 

  104. Xiang, J., Zhong, Y., Chen, X., He, Z.: Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm. Int. J. Solids Struct. 45(17), 4782–4795 (2008). https://doi.org/10.1016/j.ijsolstr.2008.04.014

    Article  MATH  Google Scholar 

  105. Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A., Dentsoras, A.J.: Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements. Comput. Struct. 86(11–12), 1318–1338 (2008). https://doi.org/10.1016/j.compstruc.2007.08.004

    Article  Google Scholar 

  106. Thatoi, D.N., Das, H.C., Parhi, D.R.: Review of techniques for fault diagnosis in damaged structure and engineering system. Adv. Mech. Eng. 4, 327569 (2012). https://doi.org/10.1155/2012/327569

    Article  Google Scholar 

  107. Baviskar, P.R., Tungikar, V.B.: Experimental investigations on crack detection using modal analysis and prediction of properties for multiple cracks by neural network. J. Inst. Eng. (India) Ser. C 94(4), 299–306 (2013). https://doi.org/10.1007/s40032-013-0088-7

    Article  Google Scholar 

  108. Babu, T.R., Sekhar, A.S.: Shaft crack identification using artificial neural networks and wavelet transform data of a transient rotor. In: 13th National Conference on Mechanisms and Machines (NaCoMM07), pp. 327–332. IISc, Bangalore (2007)

  109. Mohammed, A.A., Neilson, R.D., Deans, W.F., MacConnell, P.: Crack detection in a rotating shaft using artificial neural networks and PSD characterisation. Meccanica 49(2), 255–266 (2014). https://doi.org/10.1007/s11012-013-9790-z

    Article  MATH  Google Scholar 

  110. Gómez, M.J., Castejón, C., García-Prada, J.C.: Automatic condition monitoring system for crack detection in rotating machinery. Reliab. Eng. Syst. Saf. 152, 239–247 (2013). https://doi.org/10.1016/j.ress.2016.03.013

    Article  Google Scholar 

  111. Nanda, J., Parhi, D.R.: Theoretical analysis of the shaft. Adv. Fuzzy Syst. 2013, 8 (2013). https://doi.org/10.1155/2013/392470

    Article  Google Scholar 

  112. Castejón, C., García-Prada, J.C., Gómez, M.J., Meneses, J.: Automatic detection of cracked rotors combining multiresolution analysis and artificial neural networks. J. Vib. Control 21(15), 3047–3060 (2015). https://doi.org/10.1177/1077546313518816

    Article  MathSciNet  Google Scholar 

  113. Bachschmid, N., Pennacchi, P., Tanzi, E., Vania, A.: Identification of transverse crack position and depth in rotor systems. Meccanica 35(6), 563–582 (2000). https://doi.org/10.1023/A:1010562205385

    Article  MATH  Google Scholar 

  114. Sekhar, A.S.: Crack identification in a rotor system: a model-based approach. J. Sound Vib. 270(4–5), 887–902 (2004). https://doi.org/10.1016/s0022-460x(03)00637-0

    Article  Google Scholar 

  115. Green, I., Casey, C.: Crack detection in a rotor dynamic system by vibration monitoring—part I: analysis. J. Eng. Gas Turb. Power 127(2), 425–436 (2005). https://doi.org/10.1115/1.1789514

    Article  Google Scholar 

  116. Varney, P., Green, I.: Crack detection in a rotor dynamic system by vibration monitoring—part II: extended analysis and experimental results. J. Eng. Gas Turb. Power 134(11), 112501 (2012). https://doi.org/10.1115/1.4007275

    Article  Google Scholar 

  117. Sekhar, A.S., Mohanty, A.R., Prabhakar, S.: Vibrations of cracked rotor system: transverse crack versus slant crack. J. Sound Vib. 279, 1203–1217 (2005). https://doi.org/10.1016/j.jsv.2004.01.011

    Article  Google Scholar 

  118. Sinha, J.K.: Higher order spectra for crack and misalignment identification in the shaft of a rotating machine. Struct. Health Monit. 6(4), 325–334 (2007). https://doi.org/10.1177/1475921707082309

    Article  Google Scholar 

  119. Naik, S.S.: Crack detection in pipes using static deflection measurements. J. Inst. Eng. (India) Ser. C 93(3), 209–215 (2012). https://doi.org/10.1007/s40032-012-0027-z

    Article  Google Scholar 

  120. Jun, O.S., Gadala, M.S.: Dynamic behavior analysis of cracked rotor. J. Sound Vib. 309(1–2), 210–245 (2008). https://doi.org/10.1016/j.jsv.2007.06.065

    Article  Google Scholar 

  121. Jun, O.S.: Dynamic behavior analysis of cracked rotor based on harmonic motion. Mech. Syst. Signal Process. 30, 186–203 (2012). https://doi.org/10.1016/j.ymssp.2012.01.014

    Article  Google Scholar 

  122. Xiang, L., Zhang, Y., Hu, A.: Crack characteristic analysis of multi-fault rotor system based on whirl orbits. Nonlinear Dyn. 95(4), 2675–2690 (2019). https://doi.org/10.1007/s11071-018-4715-y

    Article  Google Scholar 

  123. Zhang, C., Li, B., Yang, Z., Xiao, W., He, Z.: Crack location identification of rotating rotor systems using operating deflection shape data. Sci. China Technol. Sci. 56(7), 1723–1732 (2013). https://doi.org/10.1007/s11431-013-5243-0

    Article  Google Scholar 

  124. Cavalini Jr., A.A., Sanches, L., Bachschmid, N., Steffen Jr., V.: Crack identification for rotating machines based on a nonlinear approach. Mech. Syst. Signal Process. 79, 72–85 (2016). https://doi.org/10.1016/j.ymssp.2016.02.041

    Article  Google Scholar 

  125. Castejón, C., Gómez, M.J., Garcia-Prada, J.C., Ordonez, A., Rubio, H.: Automatic selection of the WPT decomposition level for condition monitoring of rotor elements based on the sensitivity analysis of the wavelet energy. Int. J. Acoust. Vib. 20(2), 95–100 (2015). 20\_2\_number\_341161434963609

    Google Scholar 

  126. Spagnol, J.P., Wu, H., Yang, C.: Vibration analysis of a cracked rotor with an unbalance influenced breathing mechanism. Int. J. Mech. Eng. Robot. Res. 7(1), 22–29 (2018). https://doi.org/10.18178/ijmerr.7.1.22-29

    Article  Google Scholar 

  127. Spagnol, J.P., Wu, H., Xiao, K.: Dynamic response of a cracked rotor with an unbalance influenced breathing mechanism. J. Mech. Sci. Technol. 32(1), 57–68 (2018). https://doi.org/10.1007/s12206-017-1207-9

    Article  Google Scholar 

  128. Ebrahimi, A., Heydari, M., Behzad, M.: Forced vibration analysis of rotors with an open edge crack based on a continuous vibration theory. Arch. Appl. Mech. 87, 1871 (2017). https://doi.org/10.1007/s00419-017-1295-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Kushwaha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, N., Patel, V.N. Modelling and analysis of a cracked rotor: a review of the literature and its implications. Arch Appl Mech 90, 1215–1245 (2020). https://doi.org/10.1007/s00419-020-01667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01667-6

Keywords

Navigation