Skip to main content
Log in

In-plane stress analysis of two nanoscale holes under surface tension

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Studied in this paper is the surface tension-induced stress field around two nanoscale holes in an infinite, elastic matrix. The complex variable method is adopted to describe the assumed plane-strain deformation of the structure. The stress boundary conditions at the surfaces of the holes are formulated via the integral-type Gurtin–Murdoch model. The stress field is finally obtained with the aid of conformal mapping and series expansion methods. Numerical examples are demonstrated for the case of one approximately triangular, smooth hole and one approximately square, smooth hole. A detailed discussion is carried out about the influence of the distance between the two holes on the stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  2. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  Google Scholar 

  3. Gurtin, M.E., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)

    Article  Google Scholar 

  4. Shenoy, V.B.: Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39(15), 4039–4052 (2002)

    Article  Google Scholar 

  5. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. ASME J. Appl. Mech. 71(5), 663–671 (2004)

    Article  Google Scholar 

  6. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)

    Article  MathSciNet  Google Scholar 

  7. Wang, G.F., Wang, T.J.: Deformation around a nanosized elliptical hole with surface effect. Appl. Phys. Lett. 89(16), 161901 (2006)

    Article  Google Scholar 

  8. Sharma, P., Wheeler, L.T.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. ASME J. Appl. Mech. 74(3), 447–454 (2007)

    Article  MathSciNet  Google Scholar 

  9. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. ASME J. Appl. Mech. 74(3), 568–574 (2007)

    Article  Google Scholar 

  10. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44(24), 7988–8005 (2007)

    Article  Google Scholar 

  11. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56(6), 2298–2327 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. 53(3), 536–544 (2010)

    Article  MathSciNet  Google Scholar 

  13. Kim, C.I., Schiavone, P., Ru, C.Q.: Analysis of plane-strain crack problems (Mode-I & Mode-II) in the presence of surface elasticity. J. Elast. 104(1–2), 397–420 (2011)

    Article  MathSciNet  Google Scholar 

  14. Wang, X., Schiavone, P.: Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations. Proc. R. Soc. A 470(2170), 20140313 (2014)

    Article  MathSciNet  Google Scholar 

  15. Dai, M., Yang, H.B., Schiavone, P.: Stress concentration around an elliptical hole with surface tension based on the original Gurtin–Murdoch model. Mech. Mater. 135, 144–148 (2019)

    Article  Google Scholar 

  16. Dai, M., Schiavone, P.: Edge dislocation interacting with a Steigmann–Ogden interface incorporating residual tension. Int. J. Eng. Sci. 139, 62–69 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Surface tension-induced interfacial stresses around a nanoscale inclusion of arbitrary shape. Z. Angew. Math. Phys. 68(6), 127 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, S., Xing, S.C., Chen, Z.T., Gao, C.F.: A nanoscale hole of arbitrary shape with surface elasticity. J. Elast. 136(2), 123–135 (2018)

    Article  MathSciNet  Google Scholar 

  19. Dai, M.: Design of Periodic Harmonic Holes with Surface Tension in Plane Deformations. Math. Mech. Solids 24(7), 2060–2065 (2019)

    Article  MathSciNet  Google Scholar 

  20. Wang, S., Gao, C.F., Chen, Z.T.: Interaction between two nanoscale elliptical holes with surface tension. Math. Mech. Solids 24(5), 1556–1566 (2019)

    Article  MathSciNet  Google Scholar 

  21. Wang, S., Chen, Z.T., Gao, C.F.: Analytic solution for a circular nano-inhomogeneity in a finite matrix. Nano Mater. Sci. 1(2), 116–120 (2019)

    Article  Google Scholar 

  22. Dai, M., Li, M., Schiavone, P.: Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin–Murdoch interface model. ASME J. Appl. Mech. 85(12), 121010 (2018)

    Article  Google Scholar 

  23. Dai, M., Schiavone, P.: Effects of surface/interface elasticity on the screw dislocation-induced stress field in an elastic film-substrate system. Z. Angew. Math. Phys. 70(4), 101 (2019)

    Article  MathSciNet  Google Scholar 

  24. Dai, M., Schiavone, P.: Analytic solution for a line edge dislocation in a bimaterial system incorporating interface elasticity. J. Elast. 132(2), 295–306 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yang, H.B., Dai, M.: Influence of surface roughness on the stress field around a nanosized hole with surface elasticity. Z. Angew. Math. Phys. 69(5), 127 (2018)

    Article  MathSciNet  Google Scholar 

  26. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1975)

    MATH  Google Scholar 

  27. Zeng, X.W., Wang, G.F., Wang, T.J.: Erratum: deformation around a nanosized elliptical hole with surface effect [Appl. Phys. Lett. 89, 161901 (2006)]. Appl. Phys. Lett 98(15), 159901 (2011)

  28. Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mech. 225(12), 3453–3462 (2014)

    Article  MathSciNet  Google Scholar 

  29. Dai, M., Gao, C.F., Ru, C.Q.: Surface tension-induced stress concentration around a nanosized hole of arbitrary shape in an elastic half-plane. Meccanica 49(12), 2847–2859 (2014)

    Article  MathSciNet  Google Scholar 

  30. Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A-Solids 28(5), 926–934 (2009)

    Article  Google Scholar 

  31. Dai, M., Schiavone, P., Gao, C.F.: Uniqueness of neutral elastic circular nano-inhomogeneities in antiplane shear and plane deformations. ASME J. Appl. Mech. 83(10), 101001 (2016)

    Article  Google Scholar 

  32. Dai, M., Wang, Y.J., Schiavone, P.: Integral-type stress boundary condition in the complete Gurtin–Murdoch surface model with accompanying complex variable representation. J. Elast. 134(2), 235–241 (2018)

    Article  MathSciNet  Google Scholar 

  33. Wang, X., Schiavone, P.: Two circular inclusions with arbitrarily varied surface effects. Acta Mech. 226(5), 1471–1486 (2015)

    Article  MathSciNet  Google Scholar 

  34. Dai, M., Sun, H.Y.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75, 337–344 (2013)

    Article  Google Scholar 

  35. Savin, G.N.: Stress Concentration Around Holes. Pergamon Press, New York (1961)

    MATH  Google Scholar 

Download references

Acknowledgements

Wang appreciates the support of the China Scholarship Council. Yang thanks the support from the National Natural Science Foundation of China (11702147 and 11502090). Wang and Gao acknowledge the support of the National Natural Science Foundation of China (11472130). Chen thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunfa Gao or Zengtao Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we plot the stress distribution in the vicinity of the holes. Note that different from the stress distribution around the boundaries of the holes, which is plotted in the local \(\left( {n,\;t} \right) \) coordinate system, the stress distribution here is plotted in the global \(\left( {x,\;y} \right) \) coordinate system (See Figs. 5, 6, 7).

Fig. 5
figure 5

Distribution of the dimensionless stress \({\sigma _{x} R}/T\) around the triangular and square holes

Fig. 6
figure 6

Distribution of the dimensionless stress \({\sigma _{y} R}/T\) around the triangular and square holes

Fig. 7
figure 7

Distribution of the dimensionless stress \({\sigma _{xy} R}/T\) around the triangular and square holes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, HB., Gao, C. et al. In-plane stress analysis of two nanoscale holes under surface tension. Arch Appl Mech 90, 1363–1372 (2020). https://doi.org/10.1007/s00419-020-01672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01672-9

Keywords

Navigation