Skip to main content
Log in

High-frequency vibrations of circular and annular plates with the Mindlin plate theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Circular and annular elastic plates have wide applications as essential elements in various engineering structures and products demanding accurate analysis of their vibrations. At higher frequencies, the analysis of vibrations needs appropriate equations, as shown by the Mindlin plate equations for rectangular plates with tailored applications for the analysis of quartz crystal resonators. Naturally, there are equally strong demands for the equations and applications in circular and annular plates with the consideration of higher-order vibration modes. By following the procedure established by Mindlin based on displacement expansion in the thickness coordinate, a set of higher-order equations of vibrations of circular and annular plates are derived and truncated for comparisons with classical and first-order plate equations of circular plates. By utilizing these equations, coupled thickness-shear and flexural vibrations of circular and annular plates are analyzed for vibration frequencies and mode shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  2. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press, Boca Raton (2003)

    Google Scholar 

  3. Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56, 287–308 (2003)

    Article  Google Scholar 

  4. Ravari, M.R.K., Forouzan, M.R.: Frequency equations for the in-plane vibration of orthotropic circular annular plate. Arch. Appl. Mech. 81, 1307–1322 (2011)

    Article  Google Scholar 

  5. Filippi, M., Carrera, E., Valvano, S.: Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements. Compos. Part B Eng. 154, 77–89 (2018)

    Article  Google Scholar 

  6. Fazzolari, F.A., Carrera, E.: Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates. Compos. Struct. 94, 50–67 (2011)

    Article  Google Scholar 

  7. Reddy, J.N., Wang, C.M., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A Solid 18, 185–199 (1999)

    Article  Google Scholar 

  8. Wang, J., Hashimoto, K.Y.: A two-dimensional theory for the analysis of surface acoustic waves in finite elastic solids. J. Sound. Vib. 295, 838–855 (2006)

    Article  Google Scholar 

  9. Tahera, H.R.D., Omidia, M., Zadpoorb, A.A., Nikooyan, A.A.: Free vibration of circular and annular plates with variable thickness and different combinations of boundary conditions. J. Sound Vib. 296, 1084–1092 (2006)

    Article  Google Scholar 

  10. Irie, T., Yamada, G., Takagi, K.: Natural frequencies of thick annular plates. J. Appl. Mech. 49, 633–638 (1982)

    Article  Google Scholar 

  11. Fadaee, M.: A novel approach for free vibration of circular/annular sector plates using Reddy’s third order shear deformation theory. Meccanica 50, 2325–2351 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hosseini-Hashemi, S., Es’Haghi, M., Taher, H.R.D., Fadaie, M.: Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory. J. Sound Vib. 329, 3382–3396 (2010)

    Article  Google Scholar 

  13. Haghani, A., Mondali, M., Faghidian, S.A.: Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination. Acta. Mech. 229, 1631–1648 (2018)

    Article  MathSciNet  Google Scholar 

  14. Thai, H.T., Park, T., Choi, D.H.: An efficient shear deformation theory for vibration of functionally graded plates. Arch. Appl. Mech. 83, 137–149 (2013)

    Article  Google Scholar 

  15. Abolghasemi, S., Eipakchi, H.R., Shariati, M.: An analytical procedure to study vibration of rectangular plates under non-uniform in-plane loads based on first-order shear deformation theory. Arch. Appl. Mech. 86, 853867 (2016)

    Article  Google Scholar 

  16. Mindlin, R.D., Deresiewicz, H.: Thickness-shear and flexural vibrations of a circular disk. J. Appl. Phys. 25, 1329–1332 (1954)

    Article  MathSciNet  Google Scholar 

  17. Deresiewicz, H., Mindlin, R.D.: Axially symmetric flexural vibrations of a circular disk. J. Appl. Mech. 22, 86–88 (1955)

    MathSciNet  MATH  Google Scholar 

  18. Deresiewicz, H.: Symmetric flexural vibrations of a clamped circular disc. J. Appl. Mech. 23, 319 (1956)

    MathSciNet  Google Scholar 

  19. Iyengar, K.T.S.R., Raman, P.V.: Free vibration of circular plates of arbitrary thickness. J. Acoust. Soc. Am. 64, 1088–1092 (1978)

    Article  Google Scholar 

  20. Iyengar, K.T.S.R., Raman, P.V.: Axisymmetric free vibration of thick annular plates. J. Acoust. Soc. Am. 68, 1748–1749 (1980)

    Article  Google Scholar 

  21. Celep, Z.: Free vibration of some circular plates of arbitrary thickness. J. Sound Vib. 70, 379–388 (1980)

    Article  Google Scholar 

  22. Xiang, Y., Liew, K.M., Kitipornchai, S.: Vibration of circular and annular Mindlin plates with internal ring stiffeners. J. Acoust. Soc. Am. 110, 3696–3705 (1996)

    Article  Google Scholar 

  23. He, H.J., Yang, J.S., Jiang, Q.: Thickness-shear and thickness-twist vibrations of circular AT-cut quartz resonators. Acta Mech. Solida Sin. 26, 245–254 (2013)

    Article  Google Scholar 

  24. Liu, B., Xing, Y.F., Wang, W., Yu, W.D.: Thickness-shear vibration analysis of circular quartz crystal plates by a differential quadrature hierarchical finite element method. Compos. Struct. 131, 1073–1080 (2015)

    Article  Google Scholar 

  25. Zhu, F., Wang, B., Dai, X.Y., Qian, Z.H., Iren, K., Vladimir, K., Huang, B.: Vibration optimization of an infinite circular AT-cut quartz resonator with ring electrodes. Appl. Math. Model. 72, 217–229 (2019)

    Article  MathSciNet  Google Scholar 

  26. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural vibrations of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  27. Mindlin, R.D.: Forced thick-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23, 83–88 (1952)

    Article  MathSciNet  Google Scholar 

  28. Tiersten, H.F., Mindlin, R.D.: Forced vibrations of piezoelectric crystal plates. Q. Appl. Math. 20, 107–119 (1962)

    Article  Google Scholar 

  29. Mindlin, R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    Article  Google Scholar 

  30. Mindlin, R.D., (edited by Yang, J.S.): An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific, New Jersey (2007)

  31. Senjanovic, I., Hadzic, N., Vladimir, N., Cho, D.S.: Natural vibrations of thick circular plate based on the modified Mindlin theory. Arch. Mech. 66, 389–409 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Wang, W.J., Wang, J., Chen, G.J., Ma, T.F., Du, J.K.: Mindlin plate equations for the thickness-shear vibrations of circular elastic plates. In: Proceedings of 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, pp. 357–360 (2012)

  33. Chen, H., Wang, J., Ma, T.F., Du, J.K.: An analysis of free vibrations of isotropic, circular plates with the Mindlin plate theory. In: Proceedings of 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, pp. 397–400 (2014)

  34. Wang, J., Chen, H., Ma, T.F., Du, J.K., Yi, L.J., Yong, Y.K.: Analysis of thickness-shear vibrations of an annular plate with the Mindlin plate equations. In: Proceedings of IEEE International Frequency Control Symposium on European Frequency and Time Forum (2015)

  35. Wang, J., Yang, J.S.: Higher-order theories of piezoelectric plates and applications. Appl. Mech. Rev. 53, 87–99 (2000)

    Article  Google Scholar 

  36. Liew, K.M., Wang, C.M., Xiang, Y., Kitipornchai, S.: Vibration of Mindlin Plates: Programming the p-version Ritz Method. Elsevier, Oxford (1998)

    MATH  Google Scholar 

  37. Lee, P.C.Y., Yu, J.D., Li, X.P., Shih, W.H.: Piezoelectric ceramic disks with thickness-graded materials properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 205–215 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 11372145 and 11672142). Additional funding is from the National Key R&D Program of China (Grant No. 2017YFB1102900). It was also supported by the Research Project Foundation of Zhejiang Educational Department (Grant No. Y201636501). The authors also received financial support from the K. C. Wong Magna Fund established and administered by Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wu, R., Xie, L. et al. High-frequency vibrations of circular and annular plates with the Mindlin plate theory. Arch Appl Mech 90, 1025–1038 (2020). https://doi.org/10.1007/s00419-019-01654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01654-6

Keywords

Navigation