Skip to main content
Log in

Averaging Principle for Multiscale Stochastic Fractional Schrödinger Equation

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This paper is devoted to an averaging principle for multiscale stochastic fractional Schrödinger equation. This averaging principle can validate the effectiveness of the averaging method in fractional quantum mechanics; it ascertains the utility of the approximation obtained by averaging method. Unlike the stochastic heat equation, the smoothing effect of fractional Schrödinger semigroup is not enough to establish averaging principle; in order to overcome this difficulty, we use the vanishing viscosity method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Goubet, O., Zahrouni, E.: Finite dimensional global attractor for a fractional nonlinear Schrödinger equation. Nonlinear Differ. Equ. Appl. 24(5), 59 (2017)

    Article  MATH  Google Scholar 

  5. Hong, Y., Sire, Y.: A new class of traveling solitons for cubic fractional nonlinear Schrödinger equations. Nonlinearity 30(4), 1262 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hayashi, N., Naumkin, P.I.: Large time asymptotics for the fractional order cubic nonlinear Schrödinger equations. Annales Henri Poincaré 3(18), 1025–1054 (2016)

    MATH  Google Scholar 

  7. Ionescu, A.D., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266(1), 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antonelli, P., Athanassoulis, A., Hajaiej, H., et al.: On the XFEL Schrödinger equation: highly oscillatory magnetic potentials and time averaging. Arch. Ration. Mech. Anal. 211(3), 711–732 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abdallah, N.B., Castella, F., Méhats, F.: Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity. J. Differ. Equ. 245(1), 154–200 (2008)

    Article  ADS  MATH  Google Scholar 

  10. Gupta, K.S., Rajeev, S.G.: Renormalization in quantum mechanics. Phys. Rev. D 48(12), 5940 (1993)

    Article  ADS  Google Scholar 

  11. Lee, J.E.: The multi-phase averaging techniques and the modulation theory of the focussing and defocusing nonlinear Schrödinger equations. Commun. Partial Differ. Equ. 15(9), 1293–1311 (1990)

    Article  MATH  Google Scholar 

  12. Pavlov, M.V.: Nonlinear Schrödinger equation and the Bogolyubov–Whitham method of averaging. Theor. Math. Phys. 71(3), 584–588 (1987)

    Article  MATH  Google Scholar 

  13. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon & Breach Science Publishers, New York (1961)

    Google Scholar 

  14. Cerrai, S., Freidlin, M.I.: Averaging principle for a class of stochastic reaction diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, P.: Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete Continuous Dyn. Syst. A 38(11), 5649 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, P.: Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation[J]. J. Stat. Phys. 171(5), 897–926 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Grundlehren Math. Wiss., Band 181, Springer, NewYork, translated from the French by P. Kenneth (1972)

  19. Lisei, H., Keller, D.: A stochastic nonlinear Schrödinger problem in variational formulation. Nonlinear Differ. Equ. Appl. 23(2), 1–27 (2016)

    Article  MATH  Google Scholar 

  20. Keller, D., Lisei, H.: Variational solution of stochastic Schrödinger equations with power-type nonlinearity[J]. Stoch. Anal. Appl. 33(4), 653–672 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  22. Liskevich, V.A.: Analyticity of sub-Markovian semigroups. Proc. Am. Math. Soc. 123(4), 1097–1104 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Vladimirov, M.V.: Solvability of a mixed problem for the nonlinear Schrödinger equation. Math. USSR-Sbornik 58(2), 525 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. Gao, P.: Averaging principle for Korteweg–de Vries equation with a random fast oscillation. Zeitschrift für angewandte Mathematik und Physik 70(4), 123 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1985)

    MATH  Google Scholar 

  27. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  28. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the referees and the editor for their careful comments and useful suggestions. I would like to thank the financial support of the China Scholarship Council (No. 201806625036) and the hospitality of CNRS and IMJ, Université Paris Diderot-Paris 7, during my visit from December 2018 to November 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P. Averaging Principle for Multiscale Stochastic Fractional Schrödinger Equation. Ann. Henri Poincaré 21, 1637–1675 (2020). https://doi.org/10.1007/s00023-020-00895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00895-4

Mathematics Subject Classification

Navigation