Skip to main content
Log in

Bell Polynomials and Brownian Bridge in Spectral Gravity Models on Multifractal Robertson–Walker Cosmologies

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We obtain an explicit formula for the full expansion of the spectral action on Robertson–Walker spacetimes, expressed in terms of Bell polynomials, using Brownian bridge integrals and the Feynman–Kac formula. We then apply this result to the case of multifractal Packed Swiss Cheese Cosmology models obtained from an arrangement of Robertson–Walker spacetimes along an Apollonian sphere packing. Using Mellin transforms, we show that the asymptotic expansion of the spectral action contains the same terms as in the case of a single Robertson–Walker spacetime, but with zeta-regularized coefficients, given by values at integers of the zeta function of the fractal string of the radii of the sphere packing, as well as additional log-periodic correction terms arising from the poles (off the real line) of this zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avramidi, I.G.: Heat Kernel and Quantum Gravity, Lecture Notes in Physics. New Series M: Monographs, vol. 64. Springer, Berlin (2000)

    Book  Google Scholar 

  2. Avramidi, I.G.: Heat Kernel Method and Its Applications. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  3. Ball, A., Marcolli, M.: Spectral action models of gravity on packed swiss cheese cosmology. Class. Quantum Gravity 33(11), 115018, 39 pp (2016)

  4. Ćaćić, B., Marcolli, M., Teh, K.: Coupling of gravity to matter, spectral action and cosmic topology. J. Noncommut. Geom. 8(2), 473–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chamseddine, A., Connes, A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chamseddine, A., Connes, A.: The uncanny precision of the spectral action. Commun. Math. Phys. 293(3), 867–897 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chamseddine, A.H., Connes, A.: Spectral action for Robertson–Walker metrics. J. High Energy Phys. N. 10, 101, 29 pp (2012)

  8. Chamseddine, A.H., Connes, A.: Quantum gravity boundary terms from the spectral action on noncommutative space. PRL 99, 071302 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11(6), 991–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen, E., Ivan, C., Lapidus, M.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217(1), 42–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. J. Noncommut. Geom. 6(2), 249–274 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Connes, A.: Geometry from the spectral point of view. Lett. Math. Phys. 34(3), 203–238 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives, vol. 55. Colloquium Publications, American Mathematical Society, Princeton (2008)

    MATH  Google Scholar 

  15. Dullemond, C.P.,  Hennawi, J., Maccio, A.: Friedmann–Robertson–Walker Universe, Chapter 4, Kosmologie (MVAstro4) (2011/2012)

  16. Dunne, G.V.: Heat kernels and zeta functions on fractals. J. Phys. A 45, 374016, 22 pp (2012)

  17. Eckstein, M., Iochum, B., Sitarz, A.: Heat trace and spectral action on the standard Podleś sphere. Commun. Math. Phys. 332(2), 627–668 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Eckstein, M., Zajac, A.: Asymptotic and exact expansions of heat traces. Math. Phys. Anal. Geom. 18(1), 28, 44 pp (2015)

  19. Fan, W., Fathizadeh, F., Marcolli, M.: Spectral action for Bianchi type-IX cosmological models. J. High Energy Phys. 85, 28 pp (2015)

  20. Fan, W., Fathizadeh, F., Marcolli, M.: Motives and periods in Bianchi IX gravity models. Lett. Math. Phys. 108(12), 2729–2747 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fan, W., Fathizadeh, F., Marcolli, M.: Modular forms in the spectral action of Bianchi IX gravitational instantons. J. High Energy Phys. 01, 234 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fathizadeh, F., Marcolli, M.: Periods and motives in the spectral action of Robertson–Walker spacetimes. Commun. Math. Phys. 356(2), 641–671 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fathizadeh, F., Ghorbanpour, A., Khalkhali, M.: Rationality of spectral action for Robertson–Walker metrics. J. High Energy Phys. 12, 064 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic sums, in “Special volume on mathematical analysis of algorithms”. Theor. Comput. Sci. 144(1–2), 3–58 (1995)

    Article  MATH  Google Scholar 

  25. Frabetti, A., Manchon, D.: Five interpretations of Faà di Bruno’s formula. In: Faá di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series, IRMA Lectures in Mathematics and Theoretical Physics, vol. 21, pp. 91–147. European Mathematical Society (2015)

  26. Frucht, R., Rota, G.C.: Polinomios de Bell y particiones de conjuntos finitos. Scientia 126, 5–10 (1965)

    Google Scholar 

  27. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: geometry and group theory III. Higher dimensions. Discrete Comput. Geom. 35, 37–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: number theory. J. Number Theory 100, 1–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iochum, B., Levy, C.: Spectral triples and manifolds with boundary. J. Funct. Anal. 260(1), 117–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kang, F.: Generalized Mellin transforms, I. Sc. Sinica 7, 582–605 (1958)

    MathSciNet  MATH  Google Scholar 

  31. Labini, F.S., Montuori, M., Pietroneo, L.: Scale-invariance of galaxy clustering. Phys. Rep. 293(2–4), 61–226 (1998)

    Article  ADS  Google Scholar 

  32. Lapidus, M.L., van Frankenhuijsen, M.: Fractal Geometry, Complex Dimensions and Zeta Functions. Second Edition. Springer Monographs in Mathematics. Springer, Geometry and Spectra of Fractal Strings. Springer, Berlin (2013)

    MATH  Google Scholar 

  33. Lesch, M., Vertman, B.: Regularizing infinite sums of zeta-determinants. Math. Ann. 361(3–4), 835–862 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marcolli, M.: Noncommutative Cosmology. World Scientific, Singapore (2018)

    Book  MATH  Google Scholar 

  35. Marcolli, M., Pierpaoli, E., Teh, K.: The spectral action and cosmic topology. Commun. Math. Phys. 304, 125–174 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Marcolli, M., Pierpaoli, E., Teh, K.: The coupling of topology and inflation in noncommutative cosmology. Commun. Math. Phys. 309(2), 341–369 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Misra, O.P., Lavoine, J.L.: Transform Analysis of Generalized Functions. Elsevier, Amsterdam (1986)

    MATH  Google Scholar 

  38. Mureika, J.R., Dyer, C.C.: Multifractal analysis of packed swiss cheese cosmologies. Gen. Rel. Gravit. 36(1), 151–184 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Rees, M.J., Sciama, D.W.: Large-scale density inhomogeneities in the universe. Nature 217, 511–516 (1968)

    Article  ADS  Google Scholar 

  40. Riordan, J.: Derivatives of composite functions. Bull. Am. Math. Soc. 52, 664–667 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simon, B.: Functional Integration and Quantum Physics, Pure and Applied Mathematics, vol. 86. Academic Press, Cambridge (1979)

    Google Scholar 

  42. van Suijlekom, W.: Noncommutative Geometry and Particle Physics. Springer, Berlin (2014)

    MATH  Google Scholar 

  43. van Suijlekom, W.: Renormalization of the asymptotically expanded Yang–Mills spectral action. Commun. Math. Phys. 312(3), 883–912 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. van Suijlekom, W.: Renormalizability conditions for almost-commutative geometries. Phys. Lett. B 711(5), 434–438 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  45. van Suijlekom, W.: Renormalizability conditions for almost-commutative manifolds. Ann. Henri Poincaré 15(5), 985–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Vassilevich, D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388(5–6), 279–360 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Zagier, D.: Introduction to modular forms. In : From Number Theory to Physics (Les Houches, 1989), pp. 238–291, Springer (1992)

Download references

Acknowledgements

The first author acknowledges the support from the Marie Curie/SER Cymru II Cofund Research Fellowship 663830-SU-008 and thanks the Perimeter Institute for Theoretical Physics for their hospitality in July 2018 and their excellent environment where this work was partially carried out. The second author was partially supported by a Gantvoort Scholarship, a Mr. and Mrs. Robert C. Loschke Summer Undergraduate Research Fellowship, and a Taussky-Todd Prize. The third author was partially supported by NSF Grant DMS-1707882, by NSERC Discovery Grant RGPIN-2018-04937 and Accelerator Supplement Grant RGPAS-2018-522593, and by the Perimeter Institute for Theoretical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Fathizadeh.

Additional information

Communicated by Carlo Rovelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathizadeh, F., Kafkoulis, Y. & Marcolli, M. Bell Polynomials and Brownian Bridge in Spectral Gravity Models on Multifractal Robertson–Walker Cosmologies. Ann. Henri Poincaré 21, 1329–1382 (2020). https://doi.org/10.1007/s00023-020-00894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00894-5

Navigation