Skip to main content
Log in

MpDGK2, a Novel Diacylglycerol Kinase from Malus prunifolia, Confers Drought Stress Tolerance in Transgenic Arabidopsis

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Phospholipase D (PLD)– and phospholipase C (PLC)/diacylglycerol kinase (DGK)–coupled pathways produce phosphatidic acid (PA), which is an important signal transduction process in animal and plant cells. DGK is the second largest PA-generating factor after PLD in both biotic and abiotic stress responses, which could phosphorylate diacylglycerol (DG) to form PA. Here, we assessed the biological role of MpDGK2, a DGK gene isolated from Malus prunifolia that is upregulated by water deficit, oxidation, or exogenous abscisic acid. Its heterotopic expression is helpful to improve the drought resistance of transgenic Arabidopsis thaliana. Changes in electrolyte leakage, chlorophyll concentration, and malondialdehyde accumulation showed a positive response. MpDGK2 had effect on stomatal closure under water withholding condition. In addition, under stress conditions, MpDGK2 significantly regulates the accumulation of hydrogen peroxide (H2O2), which is manifested in the fluctuation of H2O2 concentration and the change of antioxidant enzyme activity. In summary, these results indicate that MpDGK2 affects the growth and tolerance of Arabidopsis under drought stress. Part of its function may be due to its effects on stomatal behavior and reactive oxygen species accumulation, thereby improving drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

APX:

ascorbate peroxidase

CAT:

catalase

DG:

diacylglycerol

DGK:

diacylglycerol kinase

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

ORF:

open reading frame

PA:

phosphatidic acid

PLC:

phospholipase C

PLD:

phospholipase D

POD:

peroxidase

PPIs:

polyphosphoinositides

qRT-PCR:

quantitative real-time PCR

ROS:

reactive oxygen species

SEM:

scanning electron microscopy

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    Article  CAS  Google Scholar 

  • Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol 155:185–208

    Article  CAS  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167:800–816

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  • Dias FV, Serrazina S, Vitorino M, Marchese D, Heilmann I, Godinho M, Rodrigues M, Malhó R (2019) A role for diacylglycerol kinase 4 in signaling crosstalk during Arabidopsis pollen tube growth. New Phytol. https://doi.org/10.1111/nph.15674

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Escobar-Sepúlveda HF, Trejo-Téllez LI, PérezRodríguez P, Hidalgo-Contreras JV, Gómez-Merino FC (2017) Diacylglycerol kinases are widespread in higher plants and display inducible gene expression in response to beneficial elements, metal, and metalloid ions. Front Plant Sci 8:129

    Article  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98:11444–11449

    Article  CAS  Google Scholar 

  • Gomez-Merino FC, Brearley CA, Ornatowska M, Abdel-Haliem ME, Zanor MI, Mueller-Roeber B (2004) AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoylsnglycerol and exhibits cold-inducible gene expression. J Biol Chem 279:8230–8241

    Article  CAS  Google Scholar 

  • Gomez-Merino FC, Arana-Ceballos FA, Trejo-Tellez LI, Skirycz A, Brearley CA, Dormann P, Mueller-Roeber B (2005) Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration: the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development. J Biol Chem 280:34888–34899

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta K, Gardiner S (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 1–17

    Google Scholar 

  • Katagiri T, Mizoguchi T, Shinozaki K (1996) Molecular cloning of a cDNA encoding diacylglycerol kinase (DGK) in Arabidopsis thaliana. Plant Mol Biol 30:647–653

    Article  CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  Google Scholar 

  • Lee SC, Lim CW, Lan W, He K, Luan S (2013) ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels. Mol Plant 6:528–538

    Article  CAS  Google Scholar 

  • Li YL, Tan YX, Shao Y, Li MJ, Ma FW (2015) Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene 561:225–234

    Article  CAS  Google Scholar 

  • Lichtenthaler K, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-△△CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Ma QQ, Gabelli SB, Raben DM (2019) Diacylglycerol kinases: relationship to other lipid kinases. Adv Biol Regul 71:104–110

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling — ‘in a nutshell’. J Lipid Res 50:260–265

    Article  Google Scholar 

  • Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  Google Scholar 

  • Tan YX, Qin Y, Li YL, Li MJ, Ma FW (2014) Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tissue Organ Cult 119:635–646

    Article  CAS  Google Scholar 

  • Tan YX, Yang YL, Li C, Liang BW, Li MJ, Ma FW (2017a) Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. Plant Physiol Biochem 115:219–228

    Article  CAS  Google Scholar 

  • Tan YX, Li MJ, Yang YL, Sun X, Wang N, Liang BW, Ma F (2017b) Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., enhances stomatal closure to confer drought tolerance in transgenic Arabidopsis and apple. Front. Plant Sci 8:33

    Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  CAS  Google Scholar 

  • Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Eep Bot 62:2349–2361

    Article  CAS  Google Scholar 

  • Topham MK, Prescott SM (2002) Diacylglycerol kinase: regulation and signaling roles. Thromb Haemost 88:912–918

    Article  CAS  Google Scholar 

  • van Wees SCM, van Schooten B, Vermeer JEM, van der Ent S, Haring MA, Munnik T (2008) DGK5 is required for SA responsiveness and disease resistance in Arabidopsis. Dissecting Arabidopsis phospholipid signaling using reverse genetics. pp 51–78

  • Wang X, Su Y, Liu Y, Kim SC, Fanella B (2014) Phosphatidic acid as lipid messengerand growth regulators in plants. In: Wang X (ed) Phospholipases in plant signaling. Springer, Berlin, pp 69–92

    Chapter  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Springer, New York, pp 24–36

    Google Scholar 

  • Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165:759–773

    Article  CAS  Google Scholar 

  • Zonia L, Munnik T (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134:813–823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Zhengwei Ma for the management of the potted apple plants.

Funding

This work was financially supported by the National Natural Science Foundation of China (31572108).

Author information

Authors and Affiliations

Authors

Contributions

Y. X. Tan performed and analyzed most of the experiments in this study, with assistance from L. Wang. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yanxiao Tan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

MpDGK2 affects the growth and tolerance of drought-stressed Arabidopsis plants. Its function may be due, in part, to its influence on stomatal behavior and H2O2 homeostasis to drought tolerance.

Electronic Supplementary Material

ESM 1

(DOC 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Wang, L. MpDGK2, a Novel Diacylglycerol Kinase from Malus prunifolia, Confers Drought Stress Tolerance in Transgenic Arabidopsis. Plant Mol Biol Rep 38, 452–460 (2020). https://doi.org/10.1007/s11105-020-01209-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01209-y

Keywords

Navigation