Skip to main content
Log in

Transcriptome-wide identification, classification, and characterization of NAC family genes in Bamboo Bambusa emeiensis

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The NAC (NAM-ATAF1/2-CUC) transcription factors (TFs) regulate numerous biological processes, such as growth, development, and stress responses. The yield and quality of Bambusa emeiensis, an economically important bamboo, decrease under stress caused by insect herbivores, such as Cyrtotrachelus buqueti. In the present study, 33 BeNACs, including 4 membrane-associated TFs, were identified in B. emeiensis transcriptome. Phylogenetic analysis revealed that BeNACs and their Arabidopsis thaliana counterparts clustered into 4 major groups, which were subdivided into 17 subgroups. Conserved motif and phylogenetic analyses revealed that BeNACs with close evolutionary relationships contained highly similar motifs. The N-terminal regions of BeNACs had NAC domains. In addition, the C-termini and transmembrane domains of four BeNACs contained transmembrane motifs. Transcriptome analysis revealed that majority of BeNACs were highly expressed under herbivory. The expression levels of eight BeNACs, including predicted stress-related and membrane-bound BeNACs, in bamboo shoots, shells, trichomes, and leaves and under two treatments (fed and unfed) were assessed through quantitative real-time polymerase chain reaction. Several BeNACs (BeNAC4, 10, 19, and 24) were considered as closely related to responses to herbivore. This study lays a foundation for future study of BeNACs’ functions in bamboo development and stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allu AD, Brotman Y, Xue GP, Balazadeh S (2016) Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection. EMBO Rep 11:1578–1589

    Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Mueller-roeber B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 2:346–360

    Google Scholar 

  • Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The Arabidopsis information resource: making and mining the "gold standard" annotated reference plant genome. Genesis 53(8):474–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrill P, Harrington SA, Uauy C (2017) Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3 Genes Genet 9:3019

    Google Scholar 

  • Chen YN, Slabaugh E, Brandizzi F (2008) Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development. Curr Opin Plant Biol 6:695–701

    Google Scholar 

  • Chen SP, Kuo CH, Lu HH, Lo HS, Yeh KW (2016a) The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding. PLoS Genet 10:e1006397

    Google Scholar 

  • Chen SP, Lin IW, Chen X, Huang YH, Chang HC, Lo HS, Lu HH, Yeh KW (2016b) Sweet potato NAC transcription factor, IbNAC1, up-regulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant J 3:234–248

    Google Scholar 

  • Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2004) HemI: a toolkit for illustrating heatmaps. PLoS ONE 9(11):e111988

    Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 9:755

    Google Scholar 

  • Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, Li F, Wang X (2014) Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One 9:e111837

    PubMed  PubMed Central  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL (2008) The Pfam protein families database. Nucleic Acids Res 1:D138

    Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    CAS  PubMed  Google Scholar 

  • Gan XH, Chen F, Lin YY, Ding YL, Xie H (2013) Fiber morphology of different variation types of Neosinocalamus affinis (Rendle) Keng f. J Nanjing Forestry Univ (Nat Sci Ed) 4:99–104

    Google Scholar 

  • Hai HS, Wei L, Chang SZ, You LY (2013) Analyses of the NAC transcription factor gene family in Gossypiumr aimondii Ulbr: chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol 7:663–676

    Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Qian G, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 1:145

    Google Scholar 

  • Hussey S, Mizrachi E, Berger D, Myburg A (2011) The role of SND2 in the regulation of Arabidopsis fibre secondary cell wall formation. BMC Proc 7:1–2

    Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 1–2:137

    Google Scholar 

  • Jensen MK, Hagedorn PH, De TM, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by a NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 6:867–880

    Google Scholar 

  • Jensen MK, Lindemose S, Masi FD, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. Febs Open Bio 1:321

    Google Scholar 

  • Kato H, Motomura T, Komeda Y, Saito T, Kato A (2010) Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. J Plant Physiol 7:571

    Google Scholar 

  • Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 3:647–654

    Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 21:2947–2948

    Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchishinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 4:263

    Google Scholar 

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 5:831–844

    Google Scholar 

  • Lee S, Lee HJ, Huh SU, Paek KH, Ha JH, Park CM (2014) The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Sci 10:76–83

    Google Scholar 

  • Li S, Wang N, Ji D, Xue Z, Yu Y, Jiang Y, Liu J, Liu Z, Xiang F (2016) Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean. Plant Physiol 3:1804

    Google Scholar 

  • Li Y, Luo C, Chen Y, Xiao X, Fu C, Yang Y (2019) Transcriptome-based discovery of AP2/ERF transcription factors and expression profiles under herbivore stress conditions in bamboo (Bambusa emeiensis). J Plant Biol 4:297–306

    Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 1:e86895

    Google Scholar 

  • Liu HM, Hu SL, Cao Y, Lu XQ, Gang XU, Long ZJ, Ren P (2016a) Cloning of WRKY transcription factors in Bambusa emeiensis and stress-induced expressions. J Bamboo Res 3:1–8

    Google Scholar 

  • Liu Y, Jie S, Wu Y (2016b) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 5:955–962

    Google Scholar 

  • Luo C, Liu A, Long W, Liao H, Yang Y (2017) Transcriptome analysis of Cyrtotrachelus buqueti in two cities in China. Gene 1:1–12

    CAS  Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 8:2933–2946

    Google Scholar 

  • Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 3:1747–1763

    Google Scholar 

  • Nuruzzaman M, Ramaswamy M, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 1:30–44

    Google Scholar 

  • Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Yoshiyama KO, Sakamoto T (2018) Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J Cell Mol Biol 3:439–453

    Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 2:79–87

    Google Scholar 

  • Ooka H (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 6:239

    Google Scholar 

  • Peng H, Yu X, Cheng H, Shi Q, Zhang H, Li J, Ma H (2016) Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.). Mol Biotechnol 3:220–221

    Google Scholar 

  • Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827

    PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 6:369–381

    Google Scholar 

  • Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF-FINDER: a vector for high-throughput gene identification. Gene 282:33–41

    CAS  PubMed  Google Scholar 

  • Sanggyu K, Sangmin L, Piljoon S, Soonkap K, Jeongkook K, Chungmo P (2010) Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics 1:56–65

    Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    PubMed  PubMed Central  Google Scholar 

  • Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in Potato (Solanum tuberosum L). DNA Res 20:403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 10:2731

    Google Scholar 

  • Voitsik AM, Muench S, Deising HB, Voll LM (2013) Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biol 1:85

    Google Scholar 

  • Wang N, Zheng Y, Xin H, Fang L, Li S (2012) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 1:61–75

    Google Scholar 

  • Wang YX, Liu ZW, Wu ZJ, Li H, Zhuang J (2016) Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS ONE 11:e0166727

    PubMed  PubMed Central  Google Scholar 

  • Wei S, Gao L, Zhang Y, Zhang F, Yang X, Huang D (2016) Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress. Plant Cell Rep 9:1827–1839

    Google Scholar 

  • Yamaguchishinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  Google Scholar 

  • Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, Xu H, Huang X, Li S, Zhou A, Zhang X, Bolund L, Chen Q, Wang J, Yang H, Fang L, Shi C (2018) WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res 46(W1):W71–W75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T (2009) Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J 57:615–625

    CAS  PubMed  Google Scholar 

  • Yoshiyama KO, Kaminoyama K, Sakamoto T, Kimura S (2017) Increased phosphorylation of Ser-Gln sites on SUPPRESSOR OF GAMMA RESPONSE 1 strengthens the DNA damage response in Arabidopsis thaliana. Plant Cell 12:267

    Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 4:985–989

    Google Scholar 

  • Zhou H, Linwang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 1:105–121

    Google Scholar 

Download references

Acknowledgements

We would like to thank Chengdu Basebiotech Co., Ltd for its assistance in original data processing and related bioinformatics analysis. We also thank other members of the laboratory for suggestions and discussion regarding this work and revision of the manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (31470655) and the Key Fund Project of Sichuan Provincial Department of Education (18ZA0246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, C., Chen, Y. et al. Transcriptome-wide identification, classification, and characterization of NAC family genes in Bamboo Bambusa emeiensis. Acta Physiol Plant 42, 75 (2020). https://doi.org/10.1007/s11738-020-03051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03051-x

Keywords

Navigation