Skip to main content
Log in

Improved soybean transformation for efficient and high throughput transgenic production

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Although genetic transformation of soybean dates back to over two decades, the process remains inefficient. Here, we report the development of an organogenesis-based transformation method of soybean that resulted in an average transformation frequency of 18.7%. This improved method resorts to Agrobacterium-mediated transformation of the split-seed explant with an attached partial embryonic axis obtained from an imbibed seed. In addition to the split-seed explant, Agrobacterium strain and preparation were shown to be important for improved transformation. Transformation with Agrobacterium tumefaciens EHA105 generated higher transformation frequencies and number of low copy events compared to the strain EHA101. In this system, phosphinothricin acetyl transferase conferring tolerance to glufosinate was successfully employed for efficiently producing transgenic events. Around 48% of the T1 progeny was demonstrated to be heritable based on molecular analysis and screening with the herbicide Liberty®. This method was shown to be applicable to different genotypes and a few elite lines showed high transformation frequencies. This split-seed system with an attached partial embryonic axis serves not only as an efficient means for high throughput transgenic production for basic research studies but also for the commercial development of transgenic soybean products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aragao FJL, Sarokin L, Viannna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max L. Merril) plants at a high frequency. Theor Appl Genet 101:1–6

    Article  CAS  Google Scholar 

  • Benzle KA, Finer KR, Marty D, McHale LK, Goodner BW, Taylor CG, Finer JJ (2015) Isolation and characterization of novel Agrobacterium strains for soybean and sunflower transformation. Plant Cell Tiss Organ Cult 121:71–81

    Article  CAS  Google Scholar 

  • Callis J, Raasch J, Vierstra A (1990) Ubiquitin extension proteins of Arabidopsis thaliana: structure, localization and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    CAS  PubMed  Google Scholar 

  • Chilton M-D, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  CAS  PubMed  Google Scholar 

  • Christou P, McCabe DE (1992) Prediction of germ-line transformation events in chimeric R0 transgenic soybean plantlets using tissue-specific expression patterns. Plant J 2:283–290

    Article  CAS  Google Scholar 

  • Clemente TE, La Vallee BJ, Howe AR, Conner-Ward D, Rozman RJ, Hunter PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybean derived from Agrobacterium-mediated transformation. Crop Sci 40:797–803

    Article  CAS  Google Scholar 

  • Dan Y, Reichert N (1999) Soybean transformation and regeneration methods. US 5(968):830

    Google Scholar 

  • Dang W, Wei Z (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389

    Article  CAS  Google Scholar 

  • Delmotte FM, Delay D, Cizeau J, Guerin B, Leple J-C (1991) Agrobacterium vir-inducing activities of glycosylated acetosyringone, acetovanillone, syringaldehyde and syringic acid derivatives. Phytochemistry 30:3549–3552

    Article  CAS  Google Scholar 

  • El-Shemy HA, Teraishi M, Khalafalla MM, Katsube-Tanaka T, Utsumi S, Ishimoto M (2004) Isolation of soybean plants with stable transgene expression by visual selection based on green flouresent protein. Mol Breed 14:227–238

    Article  CAS  Google Scholar 

  • Finer J, McMullen M (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. Vitro Cell Dev Bio 27:175–182

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Expt Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Gao G, Nielsen KK (2013) Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun. In: Sudowe S, ske-Kunz AB (eds) Biolistic DNA delivery: methods and protocols methods in molecular biology, vol 940. Humana Press, New York, pp 3–16

    Chapter  Google Scholar 

  • Gelvin SG (1987) TR-based sub-Ti plasmids. EP Patent 222493

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  PubMed  Google Scholar 

  • Hinchee M, Connor-ward D, Newell C, McDonnell R, Sato S, Gasser C, Fischhoff D, Re D, Fraley R, Horsch R (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio Technol 6:915–922

    CAS  Google Scholar 

  • Hong HP, Zhang H, Ohloft P, Hill S, Wiley H, Toren E, Hildebrand H, Jones T, Cheng M (2007) Organogenic callus as the target for plant regeneration and transformation via Agrobacterium in soybean (Glycine max L. Merr.). Vitro Cell Dev Biol Plant 43:558–568

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The non-T-DNA portion of pTiBo542 is responsible for the hypervirulence of Agrobacterium tumefaciens A281. J Bacteriol 168:1291–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Huang ML, Cangelosi GA, Halperin W, Nester EW (1990) A chromosomal Agrobacterium gene required for effective plant signal transduction. J Bacteriol 172:1814–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Sigareva M, Que Q (2008) Transformation of immature soybean seeds through organogenesis. US2008/0229447A1

  • Kinney AJ, Jung R, Herman EM (2001) Cosupression of the α subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticululum-derived protein bodies. Plant Cell 13:1165–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko TS, Sangman L, Kransnyanski S, Korban SK (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: agrobacterium strain and orientation of immature cotyledon explant. Theor Appl Genet 107:439–447

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park SY, Zhang ZJ (2012) An overview of genetic transformation of soybean. In: Board J (ed) A comprehensive survey of international soybean research—genetics, physiology, agronomy and nitrogen relationships. InTech, London. https://doi.org/10.5772/51076

    Chapter  Google Scholar 

  • Lee T, Tran A, Hansen AM (2016) Major factors affecting global soybean and products trade projections. https://www.ers.usda.gov/amber-waves/2016/may/major-factors-affecting-global-soybean-and-products-trade-projections/. Accessed 12 Sept 2018

  • Li S, Cong Y, Liu Y, Wang T, Shuai Q, Chen N, Gai J, Li Y (2017) Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8:246

    PubMed  PubMed Central  Google Scholar 

  • Lira JM, Cicchillo RM, Nair SK (2017) Novel class of glyphosate resistance genes. US2017/0022517A1

  • Liu C-N, Steck TR, Habeck LL, Meyer JA, Gelvin SB (1993) Multiple copies of virG allow induction of Agrobacterium tumefaciens vir genes and T-DNA processing at alkaline pH. Mol Plant-Microbe Interact 6:144–156

    Article  CAS  Google Scholar 

  • Liu W, Toirssky R, McAllister Avdiushko S, Hildebrand D, Collins G (1996) Somatic embryo cycling: evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Tissue Org Cult 47:33–42

    Article  CAS  Google Scholar 

  • Liu HK, Yang C, Wei ZM (2004) Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Nannas NJ, Fu F-F, Shi J, Aspinwall B, Parrott WA, Dawe RK (2019) Genome-scale disruptionfollowing biolistic transformation in rice and maize. Plant Cell 31:368–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinell B, Horeb W, Julson L, Emler C, Huang Y, McCabe D, Williams E (2006) Soybean transformation method. US 7002058

  • Mathieu M, Winters EK, Kong F, Wan J, Wang S, Eckert H, Luth D, Paz M, Donovan C, Zhang Z, Somers D, Wang K, Nguyen H, Shoemaker RC, Stacey G, Clemente T (2009) Establishment of a soybean (Glycine max Merr. L.) transposon-based mutagenesis repository. Planta 229:279–289

    Article  CAS  PubMed  Google Scholar 

  • McCabe D, Swain W, Martinell B, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926

    Google Scholar 

  • McCarty II D, Chennareddy SR, Cicak T, Sarria R, Gillespie DT (2015) System for imaging and orienting seeds and method of use. US 20150321353 A1

  • Memelink J, Swords KMM, Staehelin LA, Hoge JHC (1994) Southern, northern and western blot analysis. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Google Scholar 

  • Olhoft P, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    Article  CAS  PubMed  Google Scholar 

  • Olhoft PM, Bernal LM, Grist LB, Hill DS, Mankin SL, Shen Y, Kalogerakis M, Wiley H, Toren E, Song HS, Hillebrand H, Jones T (2007) A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. Vitro Cell Dev Biol Plant 43:536–549

    Article  CAS  Google Scholar 

  • Parrott W, Hoffman L, Hildebrand D, Williams E, Collins G (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617

    CAS  PubMed  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banarjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explants. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    Article  CAS  PubMed  Google Scholar 

  • Prateesh PT, Shonima GM, Jiji T, Abraham CI, Muraleedhara KG (2012) Study on efficacy of different Agrobacterium tumefaciens strains in genetic transformation of microalga Chlamydomonas reinhardtii. Adv Appl Sci Res 3:2679–2686

    Google Scholar 

  • Rech E, Viana G, Aragao F (2008) High-effciency transformation by biolostics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  CAS  PubMed  Google Scholar 

  • Reddy M, Dinkins R, Collins G (2003) Gene silencing in transgenic soybean plants transformed via microparticle bombardment. Plant Cell Rep 21:676–683

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritschi EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Klein T, Mauvais C, Hymowitz Kostow C (1998) Cytological characterization of transgenic soybean. Theor Appl Genet 96:319–324

    Article  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83:379–383

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Rathinam X (2010) Emerging factors that influence efficiency of T-DNA gene transfer into Phalaenopsis violacea orchid via Agrobacterium tumefaciens-mediated transformation system. Int J Biol 2:64–73

    Article  CAS  Google Scholar 

  • Trick H, Finer J (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max L. Merrill) embryogenic suspension culture tissue. Plant Cell Rep 17:482–488

    Article  CAS  PubMed  Google Scholar 

  • USDA Report (2020) Oil seeds: World markets and trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/v692tq55j/rf55zr82q/oilseeds.pdf. Accessed 30 Mar 2020

  • Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants of the cassava vein mosaic (CVMV) promoter. Plant Mol Biol 31:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Xu Y (2008) Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep 27:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Puehler A (1988) Nuceotide sequence of the phosphinothricin N-acetyl-transferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tobacum. Gene 70:25–38

    Article  CAS  PubMed  Google Scholar 

  • Wright TR, Shan G, Walsh TA, Lira JM, Cui C, Song P, Zhuang M, Arnold NL, Lin G, Yau K, Russell SM, Cicchillo RM, Peterson MA, Simpson DM, Zhou N, Ponsamuel J, Zhang Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. PNAS 107:20240–20245

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Takagi K, Ishimoto M (2012) Recent advances in soybean transformation and their application to molecular breeding and genome analysis. Breed Sci 61:480–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Srinivas Reddy M, Collins G, Dinkins R (2000) Agrobacterium tumefaciens-mediated transformation of soybean (Glycine max L. Merrill) using immature zygotic cotyledon explants. Plant Cell Rep 19:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Zeng P, Vadnais DA, Zhang Z, Placco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean (Glycine max L. Merrill). Plant Cell Rep 22:478–482

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Xing A, Staswick PE, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56:37–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Todd Jones for critically reviewing the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

DP and SC designed research on method development. DP, SC, GA, NS, OK, TM, TM, PS, RS contributed to experimental design, transformations, data collection, data analysis, and/or preparation of manuscript. LC performed molecular analysis and contributed to preparation of manuscript. DG, BB, NS were responsible for plant care, T1 seed production and heritability studies. KS, RS monitored the progress and reviewed the manuscript.

Corresponding author

Correspondence to Nagesh Sardesai.

Ethics declarations

Conflict of interest

GA, NS, TM, LC, DG, PS and KS are employed by Corteva Agriscience. TM, BB, NS and RS are employed by Inari, AgReliant Genetics, Syngenta, and AgBiome, Inc, respectively. DP, SC and OK declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareddy, D., Chennareddy, S., Anthony, G. et al. Improved soybean transformation for efficient and high throughput transgenic production. Transgenic Res 29, 267–281 (2020). https://doi.org/10.1007/s11248-020-00198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-020-00198-8

Keywords

Navigation