Skip to main content
Log in

Microstructure and hot flow stress at 970 °C of various heat-treated Ti2AlNb sheets

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The microstructure and hot tensile behaviors of the different heat-treated Ti2AlNb sheets were investigated by backscattered electron image (BSE), electron backscattering diffraction (EBSD), transmission electron microscope (TEM) and tensile tests. The grain sizes and contents of α2, B2/β and O phases were quantitatively studied. As the heating time increases at 970 °C, the mean grain size and content of α2-phase increased. The grain shapes and distributions of the O-phase lamellar grains were affected by the heat treatments. The plastic deformation promoted the O → B2/β phase transition and the globularization of O-phase lamellar grains at 970 °C. Calculated by the creep equation and the iso-stress method, the grain size exponent was \(\mu = 1.1\) and the relationship between the material constants of B2/β and O phase was \(K_{{\text{O}}} = 1.14K_{{{\text{B}}2/\upbeta }}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shao HP, Wang Z, Lin T, Ye Q, Guo ZM. Preparation of TiAl alloy powder by high-energy ball milling and diffusion reaction at low temperature. Rare Met. 2018;37(1):21.

    CAS  Google Scholar 

  2. He YS, Hu R, Luo WZ, He T, Lai YJ, Du YJ, Liu XH. Microstructure and mechanical properties of a new Ti2AlNb-based alloy after aging treatment. Rare Met. 2018;37(11):942.

    CAS  Google Scholar 

  3. Chowdhary NS, Graham HC, Hinze JW. Properties of high temperature alloys. Princeton: Electrochemical Society; 1977. 668.

    Google Scholar 

  4. Banerjee D, Gogia AK, Nandy TK, Joshi VA. A new ordered orthorhombic phase in a Ti2AlNb alloy. Acta Mater. 1988;36(4):871.

    CAS  Google Scholar 

  5. Boehlert CJ. Part III. The tensile behavior of Ti–Al–NbO+BCC orthorhombic alloys. Metall Trans A. 2001;2(8):1977.

    Google Scholar 

  6. Chen W, Zhang JW, Xu L, Lu B. Development of Ti2AINb alloys: opportunities and challenges. Adv Mater Process. 2014;172(5):23.

    CAS  Google Scholar 

  7. Boehlert CJ, Majumdar BS, Seetharaman V, Miracle DB. Part I. The microstructural evolution in Ti-Al-Nb O + BCC orthorhombic alloys. Metall Trans A. 1999;30(9):2305.

    Google Scholar 

  8. Jiao XY, Wang DJ, Yang JL, Liu ZQ, Liu G. Microstructure analysis on enhancing mechanical properties at 750 °C and room temperature of Ti-22Al-24Nb-0.5Mo alloy tubes fabricated by hot gas forming. J Alloy Compd. 2019;789:639.

    CAS  Google Scholar 

  9. Cheng YJ, Li SQ, Liang XB, Zhang JW. Effect of deformed microstructure on mechanical properties of Ti-22Al-25Nb alloy. Trans Nonferrous Met Soc China. 2006;16(A03):2058.

    CAS  Google Scholar 

  10. Shagiev MR, Galeyev RM, Valiakhmetov OR, Safiullin RV. Improved mechanical properties of Ti2AlNb-based intermetallic alloys and composites. Adv Mater Res. 2009;59:105.

    CAS  Google Scholar 

  11. Zhang ZX, Qu SJ, Feng AH, Shen J, Chen DL. Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. J Alloy Compd. 2017;718(25):170.

    CAS  Google Scholar 

  12. Beer AG, Barnett MR. Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn. Mat Sci Eng A. 2006;423(1):292.

    Google Scholar 

  13. Lin YC, Jiang XY, Shuai CJ, Zhao CY, He DG, Chen MS, Chen C. Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Mat Sci Eng A. 2018;711(10):293.

    CAS  Google Scholar 

  14. Kong BB, Liu G, Wang DJ, Wang KH, Yuan SJ. Microstructural investigations for laser welded joints of Ti–22Al–25Nb alloy sheets upon large deformation at elevated temperature. Mater Design. 2016;90(15):723.

    CAS  Google Scholar 

  15. Lin P, He ZB, Yuan SJ, Shen J. Tensile deformation behavior of Ti–22Al–25Nb alloy at elevated temperatures. Mat Sci Eng A. 2012;556:617.

    CAS  Google Scholar 

  16. Lin P, He Z, Yuan S, Shen J, Huang Y, Liang X. Instability of the O-phase in Ti–22Al–25Nb alloy during elevated-temperature deformation. J Alloy Compd. 2013;578(25):96.

    CAS  Google Scholar 

  17. Wu Y, Liu G, Liu ZQ, Tang ZJ, Wang B. Microstructure, mechanical properties and post-weld heat treatments of dissimilar laser-welded Ti2AlNb/Ti60 sheet. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1047-5.

    Article  Google Scholar 

  18. Wu Y, Liu G, Liu ZQ, Wang B. Formability and microstructure of Ti-22Al-24.5Nb-0.5Mo rolled sheet within hot gas bulging tests at constant equivalent strain rate. Mater Design. 2016;108(15):298.

    CAS  Google Scholar 

  19. Du Z, Jiang S, Zhang K, Lu Z, Li B, Zhang D. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Mater Design. 2016;104(15):242.

    Article  CAS  Google Scholar 

  20. Wang CW, Zhao T, Wang G, Gao J, Fang H. Superplastic forming and diffusion bonding of Ti–22Al–24Nb alloy. J Mater Process Tech. 2015;222:122.

    CAS  Google Scholar 

  21. Lin J. Selection of material models for predicting necking in superplastic forming. Int J Plast. 2003;19(4):469.

    Google Scholar 

  22. Yang L, Wang B, Liu G, Zhao H, Xiao W. Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets. Mater Design. 2015;85:135.

    CAS  Google Scholar 

  23. Ji H, Liu J, Wang B, Fu X, Xiao W, Hu Z. A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation. J Mater Process Tech. 2017;240:1.

    Google Scholar 

  24. Sagar PK, Banerjee D, Muraleedharan K, Prasad YVRK. High-temperature deformation processing of Ti-24Al-20Nb. Metall Trans A. 1996;27(9):2593.

    Google Scholar 

  25. Muraleedharan K, Nandy TK, Banerjee D, Lele S. Phase stability and ordering behaviour of the O phase in Ti-Al-Nb alloys. Intermetallics. 1995;3(3):187.

    CAS  Google Scholar 

  26. Muraleedharan K, Banerjee D, Banerjee S, Lele S. The α2 to O transformation in Ti–Al–Nb alloys. Philos Mag. 1995;71(5):1011.

    CAS  Google Scholar 

  27. Dang W, Li J, Zhang T, Kou H. Microstructure and phase transformation in Ti-22Al-(27–x)Nb-xZr alloys during continuous heating. J Mater Eng Perform. 2015;24(10):3951.

    CAS  Google Scholar 

  28. Sherby OD, Klundt RH, Miller AK. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall Trans A. 1977;8(6):83.

    Google Scholar 

  29. Wang SH, Kao PW. The strengthening effect of TiAl3 in high temperature deformation of Al–TiAl3 composites. Acta Mater. 1998;46(8):2675.

    CAS  Google Scholar 

  30. Alabort E, Putman D, Reed RC. Superplasticity in Ti–6Al–4V: characterisation, modelling and applications. Acta Mater. 2015;95(15):428.

    CAS  Google Scholar 

  31. Boehlert CJ. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy. J Phase Equilib. 1999;20(2):101.

    CAS  Google Scholar 

  32. Cao Y, Ni S, Liao X, Song M, Zhu Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mat Sci Eng R. 2018;133:1.

    Google Scholar 

  33. Mukherjee AK, Bird JE, Dorn JE. The stress/creep rate behavior of precipitation-hardened alloys. Trans ASM. 1969;62:155.

    CAS  Google Scholar 

  34. Wu Y, Wang D, Liu Z, Liu G. A unified internal state variable material model for Ti2AlNb-alloy and its applications in hot gas forming. Int J Mech Sci. 2019;164:105.

    Google Scholar 

  35. Ghosh AK, Hamilton CH. Mechanical behavior and hardening characteristics of a superplastic Ti-6Al-4V alloy. Metall Trans A. 1979;10(6):699.

    Google Scholar 

  36. Bai Q, Lin J, Dean TA, Balint DS, Gao T, Zhang Z. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions. Mat Sci Eng A. 2013;559(1):352.

    CAS  Google Scholar 

  37. Wang KH, Liu G, Zhao J, Huang K, Wang LL. Experimental and modelling study of an approach to enhance gas bulging formability of TA15 titanium alloy tube based on dynamic recrystallization. J Mater Process Tech. 2018;259:387.

    CAS  Google Scholar 

  38. Li HW, Wu C, Yang H. Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing. Int J Plast. 2013;51:271.

    CAS  Google Scholar 

  39. Cheong BH, Lin J, Ball AA. Modelling the effects of grain-size gradients on necking in superplastic forming. J. Mater. Process. Tech. 2003;134(1):10.

    Article  CAS  Google Scholar 

  40. Bae DH, Ghosh AK. Grain size and temperature dependence of superplastic deformation in an Al–Mg alloy under isostructural condition. Acta Mater. 2000;48(48):1207.

    CAS  Google Scholar 

  41. Langdon TG. A unified approach to grain boundary sliding in creep and superplasticity. Acta Mater. 1994;42(7):2437.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported the National Natural Science Foundation of China (No. 51805256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Fan, RL., Zhou, XJ. et al. Microstructure and hot flow stress at 970 °C of various heat-treated Ti2AlNb sheets. Rare Met. 39, 695–706 (2020). https://doi.org/10.1007/s12598-020-01408-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01408-2

Keywords

Navigation