Skip to main content
Log in

Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A recent progress in new emerging two-dimensional (2D) materials has provided promising opportunity for gas sensing in ultra-low detectable concentration. In this work, we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature. The gas sensor exhibited good performance with response of 1.2% and a fast response time within 30 s after exposure to 50 × 10−9 NO2 gas. As porous structure of graphene increased the surface area, the sensor showed high sensitivity of ppb level for NO2 detection. Au nanoparticles were decorated on the surface of the porous structure graphene skeleton, resulting in an incensement of response compared with pristine graphene. Au nanoparticles-decorated graphene exhibits not only better sensitivity (1.5–1.6 times larger than pristine graphene) for NO2 gas detection, but also fast response. The sensor was found to be robust and sensitive under the cycling bending test, which could also be ascribed to the merits of graphene. This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. A survey on gas sensing technology. Sensors. 2012;12(7):9635.

    Article  Google Scholar 

  2. Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK. Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators. 2015;221(11):1170.

    Article  Google Scholar 

  3. Zhang B, Liu G, Cheng M, Gao Y, Zhao L, Li S, Liu F, Yan X, Zhang T, Sun P, Lu G. The preparation of reduced graphene oxide-encapsulated alpha-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens Actuators, B. 2018;261(15):252.

    Article  CAS  Google Scholar 

  4. Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wiodarski W, Russo SP, Li YX, Kalantar-zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.

    Article  CAS  Google Scholar 

  5. Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano. 2019;13(3):3196.

    Article  CAS  Google Scholar 

  6. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators, B. 2015;218(25):160.

    Article  CAS  Google Scholar 

  7. Schwela D. Air pollution and health in urban areas. Rev Environ Health. 2000;15(1–2):13.

    CAS  Google Scholar 

  8. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. The Lancet. 2014;383(9928):1581.

    Article  CAS  Google Scholar 

  9. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.

    Article  CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  11. Perreault F, de Faria AF, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev. 2015;44(16):5861.

    Article  CAS  Google Scholar 

  12. Ricciardella F, Vollebregt S, Polichetti T, Miscuglio M, Alfano B, Miglietta ML, Massera E, Di Francia G, Sarro PM. Effects of graphene defects on gas sensing properties towards NO2 detection. Nanoscale. 2017;9(18):6085.

    Article  CAS  Google Scholar 

  13. Meng F, Guo Z, Huang X. Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal Chem. 2015;68:37.

    Article  Google Scholar 

  14. Jung MW, Myung S, Song W, Kang M, Kim SH, Yang C, Lee SS, Lim J, Park C, Lee J, An K. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method. ACS Appl Mater Interfaces. 2014;6(16):13319.

    Article  CAS  Google Scholar 

  15. Yuan W, Liu A, Huang L, Li C, Shi G. High-performance NO2 sensors based on chemically modified graphene. Adv Mater. 2013;25(5):766.

    Article  CAS  Google Scholar 

  16. Paul RK, Badhulika S, Saucedo NM, Mulchandani A. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal Chem. 2012;84(19):8171.

    Article  CAS  Google Scholar 

  17. Cho B, Yoon J, Lim SK, Kim AR, Kim D, Park S, Kwon J, Lee Y, Lee K, Lee BH, Ko HC, Hahm MG. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces. 2015;7(30):16775.

    Article  CAS  Google Scholar 

  18. Kim YH, Kim SJ, Kim Y, Shim Y, Kim SY, Hong BH, Jang HW. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano. 2015;9(10):10453.

    Article  CAS  Google Scholar 

  19. Yuan W, Shi G. Graphene-based gas sensors. J Phys Chem A. 2013;1(35):10078.

    CAS  Google Scholar 

  20. Zhang H, Li Q, Huang J, Du Y, Ruan SC. Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors. 2016;16(7):1152.

    Article  Google Scholar 

  21. Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators, B. 2018;255(2):1805.

    Article  CAS  Google Scholar 

  22. Li F, Peng H, Xia D, Yang J, Yang K, Yin F, Yuan W. Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanoparticles. ACS Appl Mater Interfaces. 2019;11(9):9309.

    Article  CAS  Google Scholar 

  23. Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun. 2011;47(1):565.

    Article  CAS  Google Scholar 

  24. Vedala H, Sorescu DC, Kotchey GP, Star A. Chemical sensitivity of graphene edges decorated with metal nanoparticles. Nano Lett. 2011;11(6):2342.

    Article  CAS  Google Scholar 

  25. Singhal AV, Charaya H, Lahiri I. Noble metal decorated graphene-based gas sensors and their fabrication: a review. Crit Rev Solid State Mater Sci. 2017;42(6):499.

    Article  CAS  Google Scholar 

  26. Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng. 2016;2:16043.

    Article  Google Scholar 

  27. Han ST, Peng H, Sun Q, Venkatesh S, Chung K, Lau SC, Zhou Y, Roy VAL. An overview of the development of flexible sensors. Adv Mater. 2017;29(33):1700375.

    Article  Google Scholar 

  28. Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun. 2014;5(1):5678.

    Article  CAS  Google Scholar 

  29. Sidorov AN, Slawinski GW, Jayatissa AH, Zamborini FP, Sumanasekera GU. A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth. Carbon. 2012;50(2):699.

    Article  CAS  Google Scholar 

  30. Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors. 2017;2(11):1744.

    Article  CAS  Google Scholar 

  31. Randeniya LK, Shi H, Barnard AS, Fang J, Martin PJ, Ostrikov KK. Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small. 2013;9(33):3993.

    Article  CAS  Google Scholar 

  32. Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensors and Actuators B: Chemical. 2019;295:86.

    Article  CAS  Google Scholar 

  33. Yaqoob U, Uddin ASMI, Chung G. A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sensors and Actuators B: Chemical. 2016;224:738.

    Article  CAS  Google Scholar 

  34. Yang G, Lee C, Kim J, Ren F, Pearton SJ. Flexible graphene-based chemical sensors on paper substrates. Phys Chem Chem Phys. 2013;15(6):1798.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Natural Science Foundation of China (No. 61874137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ling Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YY., Tu, HL., Pang, Y. et al. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 39, 651–658 (2020). https://doi.org/10.1007/s12598-020-01397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01397-2

Keywords

Navigation