Skip to main content
Log in

Reactive-sintering B4C matrix composite for armor applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The B4C matrix composite intended for armor applications still presents restrictions, such as low sintering density, production of large parts and inherited brittleness. Herein, research on this topic is discussed in detail. First, the material outlook of armor applications is organized from the development of composite armor and ceramic materials for armor to the B4C matrix composite and reactive-sintering method. In the second section, the technologies are reviewed for reactive pressureless sintering, reactive hot-pressing sintering, reactive discharge plasma sintering and self-propagating high-temperature sintering. Thereafter, our previous works on the TiB2/SiC/B4C composite and laminated Ti/B4C composite are employed to illustrate their microstructural evolution, phase transformation and fracture model. These studies provide a potential method for producing tough and high-strength ceramic composites for armor application. In the final section, the mechanism, evaluation method and influencing factors of anti-penetration for ceramic armor and B4C matrix composite are reviewed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Copyright Elsevier B.V. All rights reserved

Fig. 3

Copyright Elsevier B.V. All rights reserved

Fig. 4

Copyright Elsevier B.V. All rights reserved

Fig. 5

Copyright Elsevier Ltd and Techna Group S.r.l. All rights reserved

Fig. 6

Copyright Beijing Institute of Technology and North University of China All rights reserved

Fig. 7

Copyright China Academic Journal Electronic Publishing House All rights reserved

Fig. 8

Copyright Elsevier Ltd. All rights reserved

Fig. 9

Copyright China Academic Journal Electronic Publishing House All rights reserved

Similar content being viewed by others

References

  1. Li XD, Yang YS, Lv ST. A numerical study on the disturbance of explosive reactive armors to jet penetration. Def Technol. 2014;10(1):66.

    Article  Google Scholar 

  2. Rahimzadeh T, Arruda EM, Thouless MD. Design of armor for protection against blast and impact. J Mech Phys Solids. 2015;85:98.

    Article  Google Scholar 

  3. Zhu F, Lu G, Ruan D, Wang ZH. Plastic deformation failure and energy absorption of sandwich structures with metallic cellular cores. Int J Prot Struct. 2010;1:507.

    Article  Google Scholar 

  4. Ghaderi SH, Naeini HM, Liaghat GH. Numerical analysis of plastic deformation of a circular sheet metal subjected to transverse impact loading. Int J Impact Eng. 2007;34(4):668.

    Article  Google Scholar 

  5. Bandaru AK, Ahmad S, Bhatnagar N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos Part A Appl Sci Manuf. 2017;97:151.

    Article  CAS  Google Scholar 

  6. Liu WL, Chen ZH, Chen ZF, Cheng XW, Wang YW, Chen XH, Liu JY, Li BB, Wang SG. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:421.

    Article  CAS  Google Scholar 

  7. Lakshmi L, Nandakumar CG. Investigations on the performance of metallic and composite body armors. Procedia Technol. 2016;25:170.

    Article  Google Scholar 

  8. Gao YB, Zhang W, Xu P, Cai XM, Fan ZQ. Influence of epoxy adhesive layer on impact performance of TiB2–B4C composites armor backed by aluminum plate. Int J Impact Eng. 2018;122:60.

    Article  Google Scholar 

  9. Assis FS, Pereira AC, Filho FC, Lima EP Jr, Monteiro SN, Weber RP. Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. J Mater Res Technol. 2018;7(4):535.

    Article  CAS  Google Scholar 

  10. Bandaru AK, Vetiyatil L, Ahmad S. The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos Part B Eng. 2015;76:300.

    Article  CAS  Google Scholar 

  11. Govind G, Ahmad S, Idapalapati S. Influence of geometry and hardness of the backing plate on ballistic performance of Bi-layer ceramic armor. Procedia Eng. 2017;173:93.

    Article  CAS  Google Scholar 

  12. Chung SK. Fracture characterization of armor ceramics. Am Ceram Soc Bull. 1990;69:358.

    CAS  Google Scholar 

  13. Galanov BA, Kartuzov VV, Ivanov SM. Numerical-analytical model of penetration of long elastically deformable projectiles into semi-infinite targets. Int J Impact Eng. 2008;35(9):1009.

    Article  Google Scholar 

  14. Woodward RL. A simple one-dimension approach to moldering ceramic composite armor defeat. Impact Eng. 1990;19:455.

    Article  Google Scholar 

  15. Shin YH, Chung JH, Kim JH. Test and estimation of ballistic armor performance for recent naval ship structural materials. Int J Naval Archit Ocean Eng. 2018;10(6):762.

    Article  Google Scholar 

  16. Hu YL, Jiang F. Development and current status of armor ceramic. Ordnance Mater Sci Eng. 1996;19(5):37.

    Google Scholar 

  17. Zhang ZG, Wang MC, Song SC, Li M, Sun ZJ. Influence of panel/back thickness on impact damage behavior of alumina/aluminum armors. J Eur Ceram Soc. 2010;30(4):875.

    Article  CAS  Google Scholar 

  18. Nastic A, Merati A, Bielawski M, Bolduc M, Fakolujo O, Nganbe M. Instrumented and vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor. J Mater Sci Technol. 2015;31(8):773.

    Article  CAS  Google Scholar 

  19. Crouch IG, Kesharaju M, Nagarajah R. Characterisation, significance and detection of manufacturing defects in reaction sintered silicon carbide armour materials. Ceram Int. 2015;41(9):11581.

    Article  CAS  Google Scholar 

  20. Harris AJ, Vaughan B, Yeomans JA, Smith PA, Burnage ST. Surface preparation of silicon carbide for improved adhesive bond strength in armour applications. J Eur Ceram Soc. 2013;33(15–16):2925.

    Article  CAS  Google Scholar 

  21. Clayton JD. Penetration resistance of armor ceramics; dimensional analysis and property correlations. Int J Impact Eng. 2015;85:124.

    Article  Google Scholar 

  22. Kudyakova VS, Shishkin RA, Elagin AA, Baranov MV, Beketov AR. Aluminium nitride cubic modifications synthesis methods and its features. Review. J Eur Ceram Soc. 2017;37(4):1143.

    Article  CAS  Google Scholar 

  23. Klement R, Rolc S, Mikulikova R, Krestan J. Transparent armour materials. J Eur Ceram Soc. 2008;28(5):1091.

    Article  CAS  Google Scholar 

  24. Pallone A, Demaree J, Adams J. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2004;219–220:755.

    Article  CAS  Google Scholar 

  25. Hu D, Zhang Y, Shen ZW, Cai QY. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems. Ceram Int. 2017;43(13):10368.

    Article  CAS  Google Scholar 

  26. Bandaru AK, Ahmad S, Bhatnagarb N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos A Appl Sci Manuf. 2017;97:151.

    Article  CAS  Google Scholar 

  27. Sun C, Li YK, Wang YF, Zhu LB, Jiang QZ, Miao Y, Chen XB. Effect of alumina addition on the densification of boron carbide ceramics prepared by spark plasma sintering technique. Ceram Int. 2014;40(8):12723.

    Article  CAS  Google Scholar 

  28. Goh WL, Zheng Y, Yuan J, Ng KW. Effects of hardness of steel on ceramic armour module against long rod impact. Int J Impact Eng. 2017;109:419.

    Article  Google Scholar 

  29. Tang RT, Wen HM. Predicting the perforation of ceramic-faced light armors subjected to projectile impact. Int J Impact Eng. 2017;102:55.

    Article  Google Scholar 

  30. Brown LB, Hazell PJ, Crouch IG, Escobedo JP, Brown AD. Computational and split-Hopkinson pressure-bar studies on the effect of the jacket during penetration of an AK47 bullet into ceramic armour. Mater Des. 2017;119:47.

    Article  Google Scholar 

  31. Serjouei A, Gour G, Zhang XF, Idapalapati S, Tan GEB. On improving ballistic limit of bi-layer ceramic-metal armor. Int J Impact Eng. 2017;105:54.

    Article  Google Scholar 

  32. Wang Q, Chen ZH, Chen ZF. Design and characteristics of hybrid composite armor subjected to projectile impact. Mater Des. 2013;46:634.

    Article  CAS  Google Scholar 

  33. Suri AK, Subramanian C, Sonber JK, Murthy TSRC. Synthesis and consolidation of boron carbide: a review. Int Mater Rev. 2010;55(1):4.

    Article  CAS  Google Scholar 

  34. Domnich V, Reynaud S, Haber R, Chhowalla M. Boron carbide: structure properties and stability under stress. J Am Ceram Soc. 2011;94(11):3605.

    Article  CAS  Google Scholar 

  35. Sahani P, Karak SK, Mishra B, Chakravartyc D, Chaira D. Effect of Al addition on SiC–B4C cermet prepared by pressureless sintering and spark plasma sintering methods. Int J Refract Metal Hard Mater. 2016;57:31.

    Article  CAS  Google Scholar 

  36. Heydari MS, Baharvandi HR. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites. Int J Refract Metal Hard Mater. 2015;51:224.

    Article  CAS  Google Scholar 

  37. Saeedi HM, Baharvandi HR. Effect of different additives on the sintering ability and the properties of B4C–TiB2 composite. Int J Refract Metal Hard Mater. 2015;51:61.

    Article  CAS  Google Scholar 

  38. Xu CM, Flodström K, Esmaeilzadeh S. Low temperature densification of B4C ceramics with CaF2/Y2O3 additives. Int J Refract Metal Hard Mater. 2012;35:311.

    Article  CAS  Google Scholar 

  39. Wei RB, Zhang YJ, Gong HY, Jiang YZ, Zhang Y. The effects of rare-earth oxide additives on the densification of pressureless sintering B4C ceramics. Ceram Int. 2013;39(6):6449.

    Article  CAS  Google Scholar 

  40. Solodkyi I, Bezdorozhev O, Vterkovskiy M, Bogomol I, Bolbut V, Krüger M, Badica P, Loboda P. Addition of carbon fibers into B4C infiltrated with molten silicon. Ceram Int. 2019;45(1):168.

    Article  CAS  Google Scholar 

  41. Wu HY, Gao MX, Zhu D, Zhang SC, Pan Y, Pan HG, Liu YF, Oliveira F, Vieira JM. SiC whisker reinforced multi-carbides composites prepared from B4C and pyrolyzed rice husks via reactive infiltration. Ceram Int. 2012;38(5):3519.

    Article  CAS  Google Scholar 

  42. Wu C, Li YK, Cheng XW, Xie SH. Formation of laminar Ti–Al–N solid solution and interfacial atomistic structure of TiB2–AlN–B4C composite. J Alloys Compd. 2019;774:727.

    Article  CAS  Google Scholar 

  43. Ponnusamy P, Feng B, Martin HP, Groen P. Effect of TiB2 nano-inclusions on the thermoelectric properties of boron rich boron carbide. Mater Today Proc. 2018;5(4):10306.

    Article  CAS  Google Scholar 

  44. Alexander R, Ravikanth KV, Srivastava AP, Krishnan M, Dasgupta K. Synergistic effect of carbon nanotubes on the properties of hot pressed boron carbide. Mater Today Commun. 2018;17:450.

    Article  CAS  Google Scholar 

  45. Wang TS, Zhang YY, Karandikar P, Ni CY. Structural evolution in reaction-bonded silicon carbide and boron carbide composites (RBSBC). Ceram Int. 2018;44(2):2593.

    Article  CAS  Google Scholar 

  46. Guo H, Zhang ZW. Processing and strengthening mechanisms of boron-carbide-reinforced aluminum matrix composites. Met Powder Rep. 2018;73(2):62.

    Article  Google Scholar 

  47. Biesuz M, Sglavo VM. Flash sintering of ceramics. J Eur Ceram Soc. 2019;39(2–3):115.

    Article  CAS  Google Scholar 

  48. Raju K, Yoon DH. Sintering additives for SiC based on the reactivity: a review. Ceram Int. 2016;42(16):17947.

    Article  CAS  Google Scholar 

  49. Rojas FR, Moreno R, Guiberteau F, Ortiz AL. Aqueous colloidal processing of near-net shape B4C–Ni cermet compacts. J Eur Ceram Soc. 2016;36(8):1915.

    Article  CAS  Google Scholar 

  50. Rafiei M, Salehi M, Shamanian M, Motallebzadeh A. Preparation and oxidation behavior of B4C–Ni and B4C–TiB2–TiC–Ni composite coatings produced by an HVOF process. Ceram Int. 2014;40(8):13599.

    Article  CAS  Google Scholar 

  51. Rong L, Ru HQ, Kai G, Di T. Research on preparation of Zr(OH)4/B4C composite powder by different processes. J Rare Earths. 2007;25:340.

    Article  Google Scholar 

  52. Krishnarao RV, Alam MZ, Das DK. In-situ formation of SiC ZrB2–SiC and ZrB2–SiC–B4C–YAG coatings for high temperature oxidation protection of C/C composites. Corros Sci. 2018;141:72.

    Article  CAS  Google Scholar 

  53. Zou J, Zhang GJ, Fu ZY. Pressureless densification of ultra-high temperature ceramics and microstructure tailoring. Chin J Rare Met. 2019;43(11):1221.

    Google Scholar 

  54. Sogabe T, Matsuda T, Kuroda K. Preparation of B4C-mixed graphite by pressureless sintering and its air oxidation behavior. Carbon. 1995;33(12):1783.

    Article  CAS  Google Scholar 

  55. Gosset D, Provot B. Boron carbide as a potential inter matrix; an evaluation. Prog Nucl Energy. 2001;38(3–4):263.

    Article  CAS  Google Scholar 

  56. Taylor KM, Pallick RJ. Dense carbide composite for armor and abrasives. USP. 1973;765:300.

    Google Scholar 

  57. Ortiza AL, Candelario VM, Morenod R, Guiberteau F. Near-net shape manufacture of B4C–Co and ZrC–Co composites by slip casting and pressureless sintering. J Eur Ceram Soc. 2017;37(15):4577.

    Article  CAS  Google Scholar 

  58. Heydari MS, Baharvandi HR, Dolatkhah K. Effect of TiO2 nanoparticles on the pressureless sintering of B4C–TiB2 nanocomposites. Int J Refract Metal Hard Mater. 2015;51:6.

    Article  CAS  Google Scholar 

  59. Lee KB, Sim HS, Cho SY, Kwon H. Reaction products of Al–Mg:B4C composite fabricated by pressureless infiltration technique. Mater Sci Eng, A. 2001;302(2):227.

    Article  Google Scholar 

  60. Song SC, Bao CG, Wang B. Effect of the addition of carbon fibres on the microstructure and mechanical properties of reaction bonded B4C/SiC composites. J Eur Ceram Soc. 2016;36(8):1905.

    Article  CAS  Google Scholar 

  61. Zulkuf B, Furkan G. Microstructure and mechanical properties of Cu–B4C and CuAl–B4C composites produced by hot pressing. Rare Met. 2019;38(12):1169.

    Article  CAS  Google Scholar 

  62. Lyu Y, Tang H, Wang P. Tribological properties of carbon fiber toughened SiC prepared by hot pressing sintering. Ceram Int. 2019;45(1):832.

    Article  CAS  Google Scholar 

  63. Radloff US, Kern F, Gadow R. Spark plasma sintering and hot pressing of ZTA-NbC materials—a comparison of mechanical and electrical properties. J Eur Ceram Soc. 2018;38(11):4003.

    Article  CAS  Google Scholar 

  64. Zhang ZX, Xu CJ, Du XW, Li ZL, Wang JL, Xing WH, Sheng Y, Wang WM, Fu ZY. Synthesis mechanism and mechanical properties of TiB2–SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing. J Alloys Compd. 2015;619:26.

    Article  CAS  Google Scholar 

  65. He P, Dong SM, Kan YM, Zhang XY, Ding YS. Microstructure and mechanical properties of B4C–TiB2 composites prepared by reaction hot pressing using Ti3SiC2 as additive. Ceram Int. 2016;42(1):650.

    Article  CAS  Google Scholar 

  66. Moradkhani A, Baharvandi H, Samani MM. Mechanical properties and microstructure of B4C–NanoTiB2–Fe/Ni composites under different sintering temperatures. Mater Sci Eng, A. 2016;665:141.

    Article  CAS  Google Scholar 

  67. Liu YZZ, Guo H, Han YY, Zhang XM, Fan YM. Preparation of high thermal-conductivity flake graphite/al by spark plasma sintering. Chin J Rare Met. 2018;43(3):259.

    Article  CAS  Google Scholar 

  68. Wang LJ, Zhang JF, Jiang W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Metal Hard Mater. 2013;39:103.

    Article  CAS  Google Scholar 

  69. Rehman SS, Ji W, Khan SA, Asif M, Fu ZY, Wang WM, Wang H, Zhang JY, Wang YC. Microstructure and mechanical properties of B4C based ceramics with Fe3Al as sintering aid by spark plasma sintering. J Eur Ceram Soc. 2014;34(10):2169.

    Article  CAS  Google Scholar 

  70. Xiang MY, Gu JF, Ji W, Xie JJ, Wang WM, Xiong Y, Fu ZY. Reactive spark plasma sintering and mechanical properties of ZrB2–SiC–ZrC composites from ZrC–B4C–Si system. Ceram Int. 2018;44(7):8417.

    Article  CAS  Google Scholar 

  71. Alexander R, Murthy TSR, Vasanthakumar K, Karthiselva NS, Bakshi SR, Dasgupta K. In-situ synthesis and densification of boron carbide and boron carbide-graphene nanoplatelet composite by reactive spark plasma sintering. Ceram Int. 2018;44(17):21132.

    Article  CAS  Google Scholar 

  72. Gu JF, Xiang MY, Ji W, Wang WM, Wang H, Fu ZY. Synthesis densification and microstructure of TaC–TaB2–SiC ceramics. J Am Ceram Soc. 2018;101(12):5400.

    Article  CAS  Google Scholar 

  73. Bowen CR, Derby B. Finite-difference modelling of self-propagating high-temperature synthesis of materials. Acta Metall Mater. 1995;43(10):3903.

    Article  CAS  Google Scholar 

  74. Lis J, Miyamoto Y, Pampuch R, Tanihata K. Ti3SiC-based materials prepared by HIP-SHS techniques. Mater Lett. 1995;22(3–4):163.

    Article  CAS  Google Scholar 

  75. Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int. 2004;30(3):311.

    Article  CAS  Google Scholar 

  76. Munir ZA, Tamburini UA. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater Sci Rep. 1989;3(7–8):277.

    Article  CAS  Google Scholar 

  77. Merzhanov AG. History and recent developments in SHS. Ceram Int. 1995;21(5):371.

    Article  CAS  Google Scholar 

  78. Kahrizsangi RE, Torabi O. Combination of mechanochemical activation and self-propagating behavior for the synthesis of nanocomposite Al2O3/B4C powder. J Alloys Compd. 2012;514:54.

    Article  CAS  Google Scholar 

  79. Liang YH, Wang HY, Yang YF, Zhao RY, Jiang QC. Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu–Ti–B4C system. J Alloys Compd. 2008;462(1–2):113.

    Article  CAS  Google Scholar 

  80. Shen P, Zou BL, Jin SB, Jiang QC. Reaction mechanism in self-propagating high temperature synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system. Mater Sci Eng, A. 2007;454–455:300.

    Article  CAS  Google Scholar 

  81. Cui HZ, Liu W, Cao LL, Song Q, Tian J, Teng FL, Wang J. Effects of B4C particle size on pore structures of porous TiB2–TiC by reaction synthesis. J Eur Ceram Soc. 2015;35(13):3381.

    Article  CAS  Google Scholar 

  82. Jiang QC, Ma BX, Wang HY, Wang Y, Dong YP. Fabrication of steel matrix composites locally reinforced with in situ TiB2–TiC particulates using self-propagating high-temperature synthesis reaction of Al–Ti–B4C system during casting. Compos Part A. 2006;37(1):133.

    Article  CAS  Google Scholar 

  83. Wu C, Xie SH, Li YK. Microstructure evolution and phase transformation of TiB2/SiC/B4C composites synthesized from Ti–SiC–B4C ternary system. Int J Appl Ceram Technol. 2017;14(6):1055.

    Article  CAS  Google Scholar 

  84. Wu C, Li YK, Cheng XW, Xie SH. Microstructural evolution and oxidation behavior of TiB2–SiC–B4C composite fabricated by reactive spark plasma sintering. J Alloys Compd. 2018;765:158.

    Article  CAS  Google Scholar 

  85. Wu C, Li YK, Xie SH. Micro-structure mechanical properties and comparison of monolithic and laminated Ti–B4C composite with Al doped. J Alloys Compd. 2018;733:1.

    Article  CAS  Google Scholar 

  86. Wu C, Xie SH, Li YK, Xu HQ, Chen YW. Effects of Al addition on the phase transformation and interfacial evolution in multilayer Ti–B4C composite. Ceram Int. 2018;44(4):4121.

    Article  CAS  Google Scholar 

  87. Luo T. Preparation and Anti-elastic Properties of Fiber-Constrained Ceramic Composite Targets. Beijing: Beijing Institute of Technology; 2015. 92.

    Google Scholar 

  88. Jiang ZG, Zeng SY, Shen ZQ. Research progress on lightweight ceramic armor structure. Acta Armamentarii. 2010;31(5):603.

    CAS  Google Scholar 

  89. Hou HL, Zhu X, Liu ZJ, Gu MB, Mei ZY. Experimental study on anti-elasticity of marine lightweight ceramic composite armor. Ordnance Mater Sci Eng. 2007;30(3):5.

    Google Scholar 

  90. Zhao JS, Wang YX, Qiu GJ, Meng YJ. Research on structural/functional integrated lightweight composites. FRP Compos Mater. 2005;1:22.

    Google Scholar 

  91. Wilkins ML. Mechanics of penetration and perforation. Int J Eng Sci. 1978;16(11):793.

    Article  Google Scholar 

  92. Lee M, Yoo YH. Analysis of ceramic/metal armor systems. Int J Impact Eng. 2001;25(9):819.

    Article  Google Scholar 

  93. Hetherington JG, Rajagopalan BP. Energy and momentum changes during ballistic perforation. Int J Impact Eng. 1996;18(3):319.

    Article  Google Scholar 

  94. Qiao JC. Study on the Combined Effect of Composite Armor and Reactive Armor. Taiyuan: North University of China; 2018. 116.

    Google Scholar 

  95. Woodward RL, Gooch WA Jr, O’Donnell RG, Perciballi WJ, Baxter BJ, Pattie SD. A study of fragmentation in the ballistic impact of ceramics. Int J Impact Eng. 1994;15(5):605.

    Article  Google Scholar 

  96. Woodward RL, Donnell RG, Baxter BJ, Nicol B, Pattie SD. Energy absorption in the failure of ceramic composite armors. Mater Forum. 1989;13:174.

    CAS  Google Scholar 

  97. Li WK, Han BH, Zhao ZM. Research progress on armored protective ceramic materials. Special-cast Non-ferr Alloys. 2018;38(3):259.

    Google Scholar 

  98. Liu GW, Ni CY, Jin F, Qiao GJ, Lu TJ. Review on the anti-ballistic restraint effect of ceramic/metal composite armor. J Xi’an Jiaotong Univ. 2011;45(3):7.

    Google Scholar 

  99. Yaziv D, Rosenberg G, Partom Y. Differential ballistic efficiency of applique armor. In: Proceedings of 9th International Symposium on Ballistics. Royal Military College of Science. Shrivenahm, UK;1986. 315.

  100. Bless SJ, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramic. Int J Impact Eng. 1987;5(1/2/3/4):165.

    Article  Google Scholar 

  101. Hohler V, Stilp KA, Weber J. Hypervelocity penetration of tungsten sinter-alloy rods into aluminum. Int J Impact Eng. 1995;17(1/2/3):409.

    Article  Google Scholar 

  102. Zhang ZQ, Zhao BR, Zhang RS, Wei CZ. Armor Protection Technology Foundation. Beijing: Weapon Industry Press; 2000. 44.

    Google Scholar 

  103. Wang LS, Fang YC, Yin BY. Mechanical properties of boron carbide ceramics and its influencing factors. Powder Metall Mater Sci Eng. 2001;6(4):255.

    Google Scholar 

  104. Wu HL, Wu X, Hu LP, Li ST, Miao C, Zhong T. Experimental study on the elastic resistance of ceramic composite targets with different constraints. Ordnance Mater Sci Eng. 2010;33(2):74.

    Google Scholar 

  105. Wang TJ, Xiong N, Zhou WP, Qin SG. Research progress of new metal melt infiltration composites. Mater Mech Eng. 2006;30(9):1.

    Google Scholar 

  106. Fu SL, Ding HD, Lei BQ, Han WZ, Pang MQ. A primary investigation of ballistic performances of (B4C + Al) tri-dimension microstructure composite. J Armored Force Eng Inst. 2003;17(3):17.

    Google Scholar 

  107. Ding HD, Zhang JY, Xu Y, Fang NX, Zhang GJ. Preparation and target test of boron carbide based double composite armor plate. China Surf Eng. 2013;26(3):86.

    CAS  Google Scholar 

  108. Sun C. Preparation Properties and Ballistic Performance Test of B4C Matrix Composite Ceramic. Beijing: Beijing Institute of Technology; 2015. 122.

    Google Scholar 

  109. Yi CH, Hu ME, Gu Y. Experimental study on high-speed penetration of ceramic/aluminum alloy composite structure by 93 tungsten fragment. Ordnance Mater Sci Eng. 2013;36:17.

    CAS  Google Scholar 

  110. Yue XY, Li ZN, Guo GY, Ru HQ. Preparation and ballistic resistance of B4C–Al foam composites with a bilayer structure. J Univ Sci Technol Beijing. 2014;36:1082.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No. ASMA201909), the Scientific Research Foundation for the High-level Talents of Nanjing Institute of Technology (No. YKJ201958) and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Li, YK. & Wan, CL. Reactive-sintering B4C matrix composite for armor applications. Rare Met. 39, 529–544 (2020). https://doi.org/10.1007/s12598-020-01404-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01404-6

Keywords

Navigation