Skip to main content

Advertisement

Log in

NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Transition metal phosphides (TMPs) are recognized as such promising supercapacitor materials for the practical application, due to their superior electrical conductivity and excellent redox activity. Here, self-supported three-dimensional NiCoP nanoparticles embedded in NiCoO2 nanowires (NiCoO2/NiCoP) electrode consisting of nickel cobalt phosphides (NiCoP) with high activity and nickel cobalt oxides (NiCoO2) with good stability were fabricated by a hydrothermal and phosphorization method. The electrode integrates the advantages of nanowire arrays for fast ion transport and foam Ni for effective charge transport and flexibility. Benefitting the proper composition control of the nanohybrid and unique structure design, the optimized NiCoO2/NiCoP-20 exhibits a high specific capacitance of 3204 F·g−1 at 1 A·g−1 in 3 mol·L−1 KOH aqueous electrolyte in a three-electrode system. Moreover, the asymmetric supercapacitor assembled with the prepared NiCoO2/NiCoP-20 and activated carbon achieves a specific capacitance of 116 F·g−1 with a high energy density of 40.32 Wh·kg−1 at the power density of 800.18 W·kg−1. The practical application is further demonstrated with all-solid-state winding supercapacitor devices, with decent flexibility, in series to light the Central South University (CSU) logo consisting of 21 red LED indicators.

Graphic abstract

The NiCoO2/NiCoP-20 combines the superior electrical conductivity and preeminent redox activity of NiCoP and excellent electrochemical stability of NiCoO2 together, which performed the best electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jayaramulu K, Dubal DP, Nagar B, Ranc V, Tomanec O, Petr M, Datta KKR, Zboril R, Gómez-Romero P, Fischer RA. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv Mater. 2018;30(15):1705789.

    Google Scholar 

  2. Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater. 2017;29(7):1604167.

    Google Scholar 

  3. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CH, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832839.

    Google Scholar 

  4. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38:199205.

    Google Scholar 

  5. Lu X, Yu M, Wang G, Tong Y, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci. 2014;7(7):2160.

    Google Scholar 

  6. Zhao Y, Hu L, Zhao S, Wu L. Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater. 2016;26(23):4085.

    CAS  Google Scholar 

  7. Zhou JJ, Li Q, Chen C, Li YL, Tao K, Han L. Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem Eng J. 2018;350(15):551558.

    Google Scholar 

  8. Wei Z, Ding B, Dou H, Gascon J, Kong XJ, Xiong Y, Cai B, Zhang R, Zhou Y, Long M. 2020 roadmap on pore materials for energy and environmental applications. Chin Chem Lett. 2019;30(12):21102122.

    Google Scholar 

  9. Liu P, Yang M, Zhou S, Huang Y, Zhu Y. Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes. Electrochim Acta. 2019;294(20):383390.

    Google Scholar 

  10. Liu P, Zhu Y, Gao X, Huang Y, Wang Y, Qin S, Zhang Y. Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem Eng J. 2018;350(15):7988.

    Google Scholar 

  11. Sekhar SC, Nagaraju G, Yu JS. High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material. Nano Energy. 2018;48:8192.

    Google Scholar 

  12. Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019. https://doi.org/10.1016/j.cej.2019.123489.

    Article  Google Scholar 

  13. Liu S, Lee SC, Patil U, Shackery I, Kang S, Zhang K, Park JH, Chung KY, Jun SC. Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J Mater Chem A. 2017;5(3):1043.

    CAS  Google Scholar 

  14. Li D, Yu F, Yu Z, Sun X, Li Y. Three-dimensional flower-like Co(OH)2 microspheres of nanoflakes/nanorods assembled on nickel foam as binder-free electrodes for High performance supercapacitors. Mater Lett. 2015;158:1720.

    Google Scholar 

  15. Zhang Y, Cao N, Szunerits S, Addad A, Roussel P, Boukherroub R. Facile fabrication of ZnCoS nanomaterial for high energy flexible asymmetric supercapacitor devices. Chem Eng J. 2019;374(15):347358.

    Google Scholar 

  16. Shen L, Yu L, Wu HB, Yu XY, Zhang X, Lou XWD. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun. 2015;6:6694.

    CAS  Google Scholar 

  17. Tu CC, Lin LY, Xiao BC, Chen YS. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J Power Sources. 2016;320(15):7885.

    Google Scholar 

  18. Hwang YJ, Wu CH, Hahn C, Jeong HE, Yang P. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. Nano Lett. 2012;12(3):1678.

    CAS  Google Scholar 

  19. Ma TY, Dai S, Jaroniec M, Qiao SZ. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc. 2014;136(39):13925.

    CAS  Google Scholar 

  20. Wang X, Wang X, Liu Y, Kong Y, Sun L, Hu Y, Zhu Q. Hydrothermal process fabrication of NiO–NiCoO2–Co3O4 composites used as supercapacitor materials. J Mater Sci Mater Electron. 2017;28(20):14928.

    CAS  Google Scholar 

  21. Xu X, Zhou H, Ding S, Li J, Li B, Yu D. The facile synthesis of hierarchical NiCoO2 nanotubes comprised ultrathin nanosheets for supercapacitors. J Power Sources. 2014;267(1):641647.

    Google Scholar 

  22. Liu B, Hou J, Zhang T, Xu C, Liu H. A three-dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J Mater Chem A. 2019;7(27):16222.

    CAS  Google Scholar 

  23. Lu Y, Liu JK, Liu XY, Huang S, Wang TQ, Wang XL, Gu CD, Tu JP, Mao SX. Facile synthesis of Ni-coated Ni2P for supercapacitor applications. CrystEngComm. 2013;15(35):7071.

    CAS  Google Scholar 

  24. Wang X, Kim HM, Xiao Y, Sun Y-K. Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A. 2016;4(39):14915.

    CAS  Google Scholar 

  25. Xie L, Zong Q, Zhang Q, Sun J, Zhou Z, He B, Zhu Z, Songfeng E, Yao Y. Hierarchical NiCoP nanosheet arrays with enhanced electrochemical properties for high-performance wearable hybrid capacitors. J Alloys Compd. 2019;781:783789.

    Google Scholar 

  26. Liang H, Xia C, Jiang Q, Gandi AN, Schwingenschlögl U, Alshareef HN. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy. 2017;35:331340.

    Google Scholar 

  27. Wan H, Li L, Chen Y, Gong J, Duan M, Liu C, Zhang J, Wang H. One pot synthesis of Ni12P5 hollow nanocapsules as efficient electrode materials for oxygen evolution reactions and supercapacitor applications. Electrochim Acta. 2017;229:380386.

    Google Scholar 

  28. Li X, Wu H, Elshahawy AM, Wang L, Pennycook SJ, Guan C, Wang J. Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv Funct Mater. 2018;28(20):1800036.

    Google Scholar 

  29. Zong Q, Yang H, Wang Q, Zhang Q, Xu J, Zhu Y, Wang H, Wang H, Zhang F, Shen Q. NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors. Dalton Trans. 2018;47(45):16320.

    CAS  Google Scholar 

  30. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):4998.

    Google Scholar 

  31. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci. 2015;8(3):702.

    CAS  Google Scholar 

  32. Wang X, Tong R, Wang Y, Tao H, Zhang Z, Wang H. Surface roughening of nickel cobalt phosphide nanowire arrays/Ni foam for enhanced hydrogen evolution activity. ACS Appl Mater Interfaces. 2016;8(50):34270.

    CAS  Google Scholar 

  33. Hu YM, Liu MC, Hu YX, Yang QQ, Kong LB, Kang L. One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim Acta. 2016;215(10):114125.

    Google Scholar 

  34. Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J. Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces. 2013;5(17):8790.

    CAS  Google Scholar 

  35. Zong Q, Yang H, Wang Q, Zhang Q, Zhu Y, Wang H, Shen Q. Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem Eng J. 2019;361(1):111.

    Google Scholar 

  36. Hou S, Xu X, Wang M, Xu Y, Lu T, Yao Y, Pan L. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J Mater Chem A. 2017;5(36):19054.

    CAS  Google Scholar 

  37. Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z. Construction of a hierarchical NiCo2S4@PPy core–shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces. 2016;8(37):24525.

    CAS  Google Scholar 

  38. Zhou Q, Xing J, Gao Y, Lv X, He Y, Guo Z, Li Y. Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl Mater Interfaces. 2014;6(14):11394.

    CAS  Google Scholar 

  39. Zhu G, Yang L, Wang W, Ma M, Zhang J, Wen H, Zheng D, Yao Y. Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chem Commun. 2018;54(66):9234.

    CAS  Google Scholar 

  40. Gao M, Wang WK, Zhang X, Jiang J, Yu HQ. Fabrication of metallic nickel-cobalt phosphide hollow microspheres for high-rate supercapacitors. J Phys Chem C. 2018;122(44):25174.

    CAS  Google Scholar 

  41. Ding L, Zhang K, Chen L, Yu Z, Zhao Y, Zhu G, Chen G, Yan D, Xu H, Yu A. Formation of three-dimensional hierarchical pompon-like cobalt phosphide hollow microspheres for asymmetric supercapacitor with improved energy density. Electrochim Acta. 2019;299(10):6271.

    Google Scholar 

  42. Zhu Y, Zong Q, Zhang Q, Yang H, Wang Q, Wang H. Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. Electrochim Acta. 2019;299(10):441450.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (No. 2018YFB0104200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-Jiao Chen or Xiao-Yong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, WW., Chen, LB., Wei, WF. et al. NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Met. 39, 1034–1044 (2020). https://doi.org/10.1007/s12598-020-01374-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01374-9

Keywords

Navigation