Skip to main content
Log in

Surface-engineered gadolinium oxide nanorods and nanocuboids for bioimaging

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Folic acid and D-gluconic acid-capped gadolinium oxide nanorods and nanocuboids were synthesized via co-precipitation method. Comparative study of relaxivity factor on the role of capping and morphology for enhancing contrast ability for T1 and T2 magnetic resonance imaging (MRI) was investigated. The obtained r2/r1 ratio for folic acid and D-gluconic acid-capped gadolinium oxide nanorods and nanocuboids was 1.5 and 1.3, respectively. The nanocrystals were characterized and presented with properties such as good dispersity and stability required for standard contrast agent used in MRI. The characterization and the analysis of capping agent for nanocrystals suggest the preferable use of carbohydrate moieties with higher number of hydroxyl functional group reacted with urea and hydrogen peroxide for desired morphology and anisotropic growth. Thermogravimetric–differential thermal analysis (TG–DTA) illustrated the amount of capping, transition temperature from Gd(OH)3 to GdOOH and crystallization temperature from GdOOH to Gd2O3. These nanocrystals would be significant for other biomedical applications such as drug delivery when equipped with well-functionalized drug molecules.

Graphic abstract

Synergistic effects and mechanism of urea, hydrogen peroxide and capping agent for growth and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ezema IC, Ogbobe PO, Omah AD. Initiatives and strategies for development of nanotechnology in nations: a lesson for Africa and other least developed countries. Nanoscale Res Lett. 2014;9(1):133.

    Google Scholar 

  2. Ding YJ, Han PD, Wang LX, Zhang QT. Preparation, morphology and luminescence properties of Gd2O2S: Tb with different Gd2O3 raw materials. Rare Met. 2019;38(3):221.

    CAS  Google Scholar 

  3. Heinz H, Pramanik C, Heinz O, Ding Y, Mishra RK, Marchon D, Flatt RJ, Estrela-Lopis I, Llop J, Moya S, Ziolo RF. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep. 2017;72(1):1.

    CAS  Google Scholar 

  4. Luo JM, Xu JL, Zhong ZC. Microstructure and properties of Y2O3-doped steel-cemented WC prepared by microwave sintering. Rare Met. 2013;32(5):496.

    CAS  Google Scholar 

  5. Laal M. Innovation and medicine. Proc Technol. 2012;1(3):469.

    Google Scholar 

  6. Liu TM, Conde J, Lipiński T, Bednarkiewicz A, Huang C-C. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 2016;8(8):295.

    Google Scholar 

  7. Mahata MK, Bae H, Lee KT. Upconversion luminescence sensitized pH-nanoprobes. Molecules. 2017;22(12):2064.

    Google Scholar 

  8. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161.

    CAS  Google Scholar 

  9. Ranga A, Agarwal Y, Garg KJ. Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging. 2017;27(2):141.

    Google Scholar 

  10. Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365.

    CAS  Google Scholar 

  11. Ibrahim MA, Dublin AB. Magnetic resonance imaging (MRI), gadolinium. Treasure Island: StatPearls; 2019. 1.

    Google Scholar 

  12. Berven CA, Dobrokhotov VV. Towards practicable sensors using one-dimensional nanostructures. Int J Nanotechnol. 2008;5(4/5):402.

    CAS  Google Scholar 

  13. Shanmugasundaram A, Ramireddy B, Basak P, Manorama SV, Srinath S. Hierarchical In(OH)3 as a precursor to mesoporous In2O3 nanocubes: a facile synthesis route, mechanism of self-assembly, and enhanced sensing response toward hydrogen. J Phys Chem C. 2014;118(13):6909.

    CAS  Google Scholar 

  14. Liu JW, Xu J, Hu W, Yang JL, Yu SH. Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat. 2016;2(3):167.

    CAS  Google Scholar 

  15. Hazarika S, Mohanta D. Oriented attachment (OA) mediated characteristic growth of Gd2O3 nanorods from nanoparticle seeds. J Rare Earths. 2016;34(2):158.

    CAS  Google Scholar 

  16. Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev. 2017;46(13):3866.

    CAS  Google Scholar 

  17. Wu B, Liu D, Mubeen S, Chuong TT, Moskovits M, Stucky GD. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc. 2016;138(4):1114.

    CAS  Google Scholar 

  18. Castelli A, Striolo A, Roig A, Murphy C, Reguera J, Liz-Marzán L, Mueller A, Critchley K, Zhou Y, Brust M, Thill A, Scarabelli L, Tadiello L, Konig TAF, Reiser B, Lopez-Quintela MA, Buzza M, Deak A, Kuttner C, Solveyra EG, Pasquato L, Portehault D, Mattoussi H, Kotov NA, Kumacheva E, Heatley K, Bergueiro J, Gonzalez G, Tong W, Tahir MN, Abecassis B, Rojas-Carrillo O, Xia Y, Mayer M, Peddis D. Anisotropic nanoparticles: general discussion. Faraday Discuss. 2016;191:229.

    CAS  Google Scholar 

  19. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116(6):3722.

    CAS  Google Scholar 

  20. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385.

    CAS  Google Scholar 

  21. Sánchez Lafarga AK, Pacheco Moisés FP, Gurinov A, Ortiz GG, Carbajal Arízaga GG. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids. Mater Sci Eng C. 2015;2015(48):541.

    Google Scholar 

  22. Chávez-García D, Juárez-Moreno K, Campos CH, Alderete JB, Hirata GA. Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells. J Mater Res. 2018;33(02):191.

    Google Scholar 

  23. Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C. 2009;113(36):16002.

    CAS  Google Scholar 

  24. Osorio-Román IO, Ortega-Vásquez V, Vargas CV, Aroca RF. Surface-enhanced spectra on D-gluconic acid coated silver nanoparticles. Appl Spectrosc. 2011;6598:838.

    Google Scholar 

  25. Wei X, Wei Z, Zhang L, Liu Y, He D. Science Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: preparation, structure characterization, and surface coordination. J Colloid Interface Sci. 2011;354(1):76.

    CAS  Google Scholar 

  26. Ye YX, Wei LH, Sheng WC, Chen M, Hua YQ. Luminescent properties of a new Nd3+-doped complex with two different carboxylic acids and pyridine derivative. Rare Met. 2013;32(5):490.

    CAS  Google Scholar 

  27. Yu S, Chow GM. Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem. 2004;14(18):2781.

    CAS  Google Scholar 

  28. Gawali SL, Zhang M, Kumar S, Aswal VK, Danino D, Hassan PA. Dynamically arrested micelles in a supercooled sugar urea melt. Commun Chem. 2018;1(1):33.

    Google Scholar 

  29. Zangi R, Zhou R, Berne BJ. Urea’s action on hydrophobic interactions. J Am Chem Soc. 2009;131(4):1535.

    CAS  Google Scholar 

  30. Gupta BK, Singh S, Kumar P, Lee Y, Kedawat G, Narayanan TN, Vithayathil SA, Ge L, Zhan X, Gupta S, Marti AA, Vajtai R, Ajayan PM, Kaipparettu BA. Bifunctional luminomagnetic rare-earth nanorods for high-contrast bioimaging nanoprobes. Sci Rep. 2016;6(1):32401.

    CAS  Google Scholar 

  31. Zhou L, Gu Z, Liu X, Yin W, Tian G, Yan L, Jin S, Ren W, Xing G, Li W, Chang X, Hu Z, Zhao Y. Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem. 2012;22(3):966.

    CAS  Google Scholar 

  32. Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc. 2011;133(46):18931.

    CAS  Google Scholar 

  33. Carneiro AAO, Vilela GR, De Araujo DB, Baffa O. MRI relaxometry: methods and applications. Braz J Phys. 2006;36(1):9–15.

    Google Scholar 

  34. Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med. 1995;34(2):227.

    CAS  Google Scholar 

  35. Debasu ML, Ananias D, Macedo AG, Rocha J, Carlos LD. Emission-decay curves, energy-transfer and effective-refractive index in Gd2O3:Eu3+ nanorods. J Phys Chem C. 2011;115(31):15297.

    CAS  Google Scholar 

  36. Tamrakar RK, Bisen DP, Robinson CS, Sahu IP, Brahme N. Ytterbium doped gadolinium oxide (Gd2O3:Yb3+) phosphor: topology, morphology, and luminescence behaviour. Indian J Mater Sci. 2014;2014:1.

    Google Scholar 

  37. Singh G, McDonagh BH, Hak S, Peddis D, Bandopadhyay S, Sandvig I, Sandvig A, Glomm WR. Synthesis of gadolinium oxide nanodisks and gadolinium doped iron oxide nanoparticles for MR contrast agents. J Mater Chem B. 2017;5(3):418.

    CAS  Google Scholar 

  38. Chang C, Zhang Q, Mao D. The hydrothermal preparation, crystal structure and photoluminescent properties of GdOOH nanorods. Nanotechnology. 2006;17(8):1981.

    CAS  Google Scholar 

  39. Chaudhary S, Kumar S, Umar A, Singh J, Rawat M, Mehta SK. Europium-doped gadolinium oxide nanoparticles: a potential photoluminescencent probe for highly selective and sensitive detection of Fe3+ and Cr3+ ions. Sensors Actuators B Chem. 2017;243:579.

    CAS  Google Scholar 

  40. Yang J, Li C, Cheng Z, Zhang X, Quan Z, Zhang C, Lin J. Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods. J Phys Chem C. 2007;111(49):18148.

    CAS  Google Scholar 

  41. Zhang G, Gao J, Qian J, Zhang L, Zheng K, Zhong K, Cai D, Zhang X, Wu Z. Hydroxylated mesoporous nanosilica coated by polyethylenimine coupled with gadolinium and folic acid: a tumor-targeted T1 magnetic resonance contrast agent and drug delivery system. ACS Appl Mater Interfaces. 2015;7(26):14192.

    CAS  Google Scholar 

  42. Huang S, Xu HL, Wang L, Zhong SL. Microwave-hydrothermal synthesis, characterization and upconversion luminescence of rice-like Gd(OH)3 nanorods. Rare Met. 2016. https://doi.org/10.1007/s12598-016-0816-2.

    Article  Google Scholar 

  43. Kim CR, Baeck JS, Chang Y, Bae JE, Chae KS, Lee GH. Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 15 T MR field. Phys Chem Chem Phys. 2014;16(37):19866.

    CAS  Google Scholar 

  44. Ahmad MW, Xu W, Kim SJ, Baeck JS, Chang Y, Bae JE, Chae KS, Park JA, Kim TJ, Lee GH. Potential dual imaging nanoparticle:Gd2O3 nanoparticle. Sci Rep. 2015;5(1):8549.

    CAS  Google Scholar 

  45. Yousefi T, Torab-Mostaedi M, Ghasemi M, Ghadirifar A. Synthesis of Gd2O3 nanoparticles: using bulk Gd2O3 powders as precursor. Rare Met. 2015;34(8):540.

    CAS  Google Scholar 

  46. Kang J, Min B, Sohn Y. Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram Int. 2015;41(1):1243.

    CAS  Google Scholar 

  47. Fang J, Chandrasekharan P, Liu XL, Yang Y, Lv YB, Yang CT, Ding J. Biomaterials manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials. 2014;35(5):1636.

    CAS  Google Scholar 

  48. Huang CL, Huang CC, Mai FD, Yen CL, Tzing SH, Hsieh HT, Ling YC, Chang JY. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J Mater Chem B. 2015;3(4):651.

    CAS  Google Scholar 

  49. Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev. 1987;87(5):901.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Central University of Gujarat, Gandhinagar, and Central University of Punjab, Bathinda, for providing infrastructure and instrumentation facility for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawda, N.R., Mahapatra, S.K. & Banerjee, I. Surface-engineered gadolinium oxide nanorods and nanocuboids for bioimaging. Rare Met. 40, 848–857 (2021). https://doi.org/10.1007/s12598-020-01378-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01378-5

Keywords

Navigation