Skip to main content
Log in

SEM-CL Study of Quartz Containing Fluid Inclusions in Wangjiazhuang Porphyry Copper (-Molybdenum) Deposit, Western Shandong, China

  • Petrology, Geochemistry and Ore Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Wangjiazhuang porphyry copper (-molybdenum) deposit is located at Zouping volcanic basin in Shandong Province, East China and hosted in the Wangjiazhuang intrusive complex emplaced along a late volcanic conduit. There are two types of ores in this deposit: early disseminated and stockwork ores in the ore-bearing intrusion, and late massive sulfide-quartz veins above brecciated quartz monzonite. The ore minerals are mainly pyrite, chalcopyrite, and subordinately magnetite, tennantite, molybdenite with minor bornite, enargite, galena and sphalerite, etc., and gangue minerals including K-feldspar, biotite, quartz, muscovite-sericite, chlorite and calcite. Combined with fluid inclusion study, the scanning electron microscope-cathodoluminescence (SEM-CL) study of quartz in the deposit and wall rocks shows significant differences between the two types of quartz in the ores. In addition, four types of primary-pseudosecondary fluid inclusions in the quartz have been recognized. They are one- or two-phase aqueous inclusions with vapor/liquid ratios less than 30% to 40% (type I); gas-rich inclusions with vapor/ liquid ratios more than 50% (type II), some of which contain some small opaque minerals, probably chalcopyrite; multiphase fluid inclusions with daughter minerals of halite±anhydrite±opaque (chalcopyrite)± sylvite±hematite±unknown crystal (type III); and mica-bearing fluid inclusions (type IV). Quartz containing abundant muscovite-bearing and halite-bearing fluid inclusions in the mineralized quartz monzonite with potassic-silicic alteration, have better oscillatory growth zoning with CL-colors from bright in the core to darker in the rim, indicating variations of element concentrations in the fluid media from which quartz grew during the later period of magmatic-hydrothermal process. In contrast, the quartz in the sulfide-quartz veins contains mainly fluid inclusions of low-to-medium salinities and does not show oscillatory zoning, indicating that there was less fluctuation in composition and element concentrations of the hydrothermal fluids. However, the quartz containing halite-bearing fluid inclusions and being associated with copper-molybdenum mineralization in the sulfide-quartz veins shows zoning in its rims, indicating variations in composition and element concentrations of the hydrothermal fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Audétat, A., Pettke, T., Heinrich, C. A., et al., 2008. Special Paper: The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology, 103(5): 877–908. https://doi.org/10.2113/gsecongeo.103.5.877

    Article  Google Scholar 

  • Bernet, M., Bassett, K., 2005. Provenance Analysis by Single-Quartz-Grain SEM-CL/Optical Microscopy. Journal of Sedimentary Research, 75(3): 492–500. https://doi.org/10.2110/jsr.2005.038

    Article  Google Scholar 

  • Bignall, G., Sekine, K., Tsuchiya, N., 2004. Fluid-Rock Interaction Processes in the Te Kopia Geothermal Field (New Zealand) Revealed by SEM-CL Imaging. Geothermics, 33(5): 615–635. https://doi.org/10.1016/j.geothermics.2004.03.001

    Article  Google Scholar 

  • Bodnar, R. J., 1994. Synthetic Fluid Inclusions: XII. the System H2O-NaCl. Experimental Determination of the Halite Liquidus and Isochores for a 40 wt.% NaCl Solution. Geochimica et Cosmochimica Acta, 58(3): 1053–1063. https://doi.org/10.1016/0016-7037(94)90571-1

    Article  Google Scholar 

  • Bodnar, R. J., Student, J. J., 2006. Melt Inclusions in Plutonic Rocks: Petrography and Microthermometry. In: Webster, J. D., ed., Melt Inclusions in Plutonic Rocks. Montreal. Mineralogical Association of Canada, Quebec. 36: 1–25

    Google Scholar 

  • Chen, L., Xu, J., Su, L., 2006. Application of Cathodoluminescence to Zircon in FEG-ESIM. Progress in Natural Science, 16(9): 919–924. https://doi.org/10.1080/10020070612330089

    Article  Google Scholar 

  • Chen, L., Xu, J., Chen, J., 2015. Applications of Scanning Electron Microscopy in Earth Sciences. Science China Earth Sciences, 58(10): 1768–1778. https://doi.org/10.1007/s11430-015-5172-9

    Article  Google Scholar 

  • Cline, J. S., Bodnar, R. J., 1994. Direct Evolution of Brine from a Crystallizing Silicic Melt at the Questa, New Mexico, Molybdenum Deposit. Economic Geology, 89(8): 1780–1802. https://doi.org/10.2113/gsecongeo.89.8.1780

    Article  Google Scholar 

  • Eastoe, C. J., 1978. A Fluid Inclusion Study of the Panguna Porphyry Copper Deposit, Bougainville, Papua New Guinea. Economic Geology, 73(5): 721–748. https://doi.org/10.2113/gsecongeo.73.5.721

    Article  Google Scholar 

  • Demars, C., Pagel, M., Deloule, E., et al., 1996. Cathodoluminescence of Quartz from Sandstones; Interpretation of the UV Range by Determination of Trace Element Distributions and Fluid-Inclusion P-T-X Properties in Authigenic Quartz. American Mineralogist, 81(7/8): 891–901. https://doi.org/10.2138/am-1996-7-812

    Article  Google Scholar 

  • Götze, J., Plötze, M., Habermann, D., 2001. Origin, Spectral Characteristics and Practical Applications of the Cathodoluminescence (CL) of Quartz—A Review. Mineralogy and Petrology, 71(3/4): 225–250. https://doi.org/10.1007/s007100170040

    Google Scholar 

  • Halter, W. E., Heinrich, C. A., Pettke, T., 2005. Magma Evolution and the Formation of Porphyry Cu-Au Ore Fluids: Evidence from Silicate and Sulfide Melt Inclusions. Mineralium Deposita, 39(8): 845–863. https://doi.org/10.1007/s00126-004-0457-5

    Article  Google Scholar 

  • Han, Y. Z., Wang, S. J., Cao, X. H., 2008. Study on Metallogenic Geological Conditions and Typical Deposits of Copper Deposits in Zouping Area, Shandong Province. Land and Resources in Shandong Province, 24(3): 21–26 (in Chinese with English Abstract)

    Google Scholar 

  • Klemm, L. M., Pettke, T., Heinrich, C. A., et al., 2007. Hydrothermal Evolution of the El Teniente Deposit, Chile: Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 102(6): 1021–1045. https://doi.org/10.2113/gsecongeo.102.6.1021

    Article  Google Scholar 

  • Klemm, L. M., Pettke, T., Heinrich, C. A., 2008. Fluid and Source Magma Evolution of the Questa Porphyry Mo Deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533–552. https://doi.org/10.1007/s00126-008-0181-7

    Article  Google Scholar 

  • Lan, T. G., Hu, R. Z., Bi, X. W., et al., 2018. Metasomatized Asthenospheric Mantle Contributing to the Generation of Cu-Mo Deposits within an Intracontinental Setting: A Case Study of the ≈128 Ma Wangjiazhuang Cu-Mo Deposit, Eastern North China Craton. Journal of Asian Earth Sciences, 160: 460–489. https://doi.org/10.1016/j.jseaes.2017.07.014

    Article  Google Scholar 

  • Landtwing, M. R., Furrer, C., Redmond, P. B., et al., 2010. The Bingham Canyon Porphyry Cu-Mo-Au Deposit. III. Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion. Economic Geology, 105(1): 91–118. https://doi.org/10.2113/gsecongeo.105.1.91

    Article  Google Scholar 

  • Lecumberri-Sanchez, P., Newton, M. C. III, Westman, E. C., et al., 2013. Temporal and Spatial Distribution of Alteration, Mineralization and Fluid Inclusions in the Transitional High-Sulfidation Epithermal-Porphyry Copper System at Red Mountain, Arizona. Journal of Geochemical Exploration, 125: 80–93. https://doi.org/10.1016/j.gexplo.2012.11.017

    Article  Google Scholar 

  • Li, B. F., Yuan, S. R., 1991. Geological Characteristics of Porphyry Copper (Molybdenum) Deposits in the Zouping Area, Shandong Province. Geology and Prospecting, (1): 7–12 (in Chinese)

    Google Scholar 

  • Li, H. Y., Xu, Z. W., Lu, X. C., et al., 2008. Evolution of Mesozoic Volcanic Rocks in the Zouping Basin, Western Shandong Province: Constraints for Mantle Sources. Acta Perologica Sinica, 24(11): 2537–2547 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. K., Li, S. H., 2014. Application of Hydrothermal Diamond Anvil Cell to Homogenization Experiments of Silicate Melt Inclusions. Acta Geologica Sinica—English Edition, 88(3): 854–864. https://doi.org/10.1111/1755-6724.12242

    Article  Google Scholar 

  • Li, S. H., Li, J. K., Chou, I. M., et al., 2017. The Formation of the Yichun Ta-Nb Deposit, South China, through Fractional Crystallization of Magma Indicated by Fluid and Silicate Melt Inclusions. Journal of Asian Earth Sciences, 137: 180–193. https://doi.org/10.1016/j.jseaes.2016.11.016

    Article  Google Scholar 

  • Li, Y. Q., She, Z. B., Ma, C. Q., 2011. SEM-CL Analysis of Quartz and Its Application in Petrology. Advances in Earth Science, 26(3): 325–331 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, P. R., Xiong, Y. X., Ma, X. D., et al., 2013. SHRIMP Zircon U-Pb and Molybdenite Re-Os Age of the Copper Polymetallic Deposit in Zouping Volcanic Basin, Shandong Province. Geological Bulletin of China, 32(10): 1621–1630 (in Chinese with English Abstract)

    Google Scholar 

  • Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Publishing House, Beijing. 1–485 (in Chinese)

    Google Scholar 

  • Meng, X. J., Hou, Z. Q., Li, Z. Q., 2005. Fluid Inclusions and Ore-Forming Processes of Three Porphyry Copper Deposits in Gangdese Belt, Tibet. Mineral Deposits, 24(4): 398–408 (in Chinese with English Abstract)

    Google Scholar 

  • Nash, J. T., 1976. Fluid-Inclusion Petrology-Data from Porphyry Copper Deposits and Applications to Exploration. U.S. Geological Survey Professional Paper, Washington. 907–916

    Google Scholar 

  • Pagel, M., Barbin, V., Blanc, P., et al., 2000. Cathodoluminescence in Geosciences. Springer, New York. 514

    Book  Google Scholar 

  • Pan, X. F., Song, Y. C., Wang, S. X., et al., 2009. Evolution of Hydrothermal Fluid of Dexing Tongchang Copper-Gold Porphyry Deposit. Acta Geologica Sinica, 83(12): 1929–1950 (in Chinese with English Abstract)

    Google Scholar 

  • Penniston-Dorland, S. C., 2001. Illumination of Vein Quartz Textures in a Porphyry Copper Ore Deposit Using Scanned Cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86(5/6): 652–666. https://doi.org/10.2138/am-2001-5-606

    Article  Google Scholar 

  • Redmond, P. B., Einaudi, M. T., Inan, E. E., et al., 2004. Copper Deposition by Fluid Cooling in Intrusion-Centered Systems: New Insights from the Bingham Porphyry Ore Deposit, Utah. Geology, 32(3): 217–220. https://doi.org/10.1130/g19986.1

    Article  Google Scholar 

  • Roedder, E., 1971. Fluid Inclusion Studies on the Porphyry-Type Ore Deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66(1): 98–118. https://doi.org/10.2113/gsecongeo.66.1.98

    Article  Google Scholar 

  • Roedder, E., 1984. Fluid Inclusions. In: Mineralogical Society of America. Mineralogical Society of America, Chantilly, VA. Reviews in Mineralogy, 12: 646

    Google Scholar 

  • Ruffini, R., Borghi, A., Cossio, R., et al., 2002. Volcanic Quartz Growth Zoning Identified by Cathodoluminescence and EPMA Studies. Microchimica Acta, 139(1/2/3/4): 151–158. https://doi.org/10.1007/s006040200054

    Article  Google Scholar 

  • Rusk, B., Reed, M., 2002. Scanning Electron Microscope-Cathodoluminescence Analysis of Quartz Reveals Complex Growth Histories in Veins from the Butte Porphyry Copper Deposit, Montana. Geology, 30(8): 727–730. https://doi.org/10.1130/0091-7613(2002)030<0727:semcao>2.0.co;2

    Article  Google Scholar 

  • Rusk, B. G., Reed, M. H., Dilles, J. H., et al., 2006. Intensity of Quartz Cathodoluminescence and Trace-Element Content in Quartz from the Porphyry Copper Deposit at Butte, Montana. American Mineralogist, 91(8/9): 1300–1312. https://doi.org/10.2138/am.2006.1984

    Article  Google Scholar 

  • Rusk, B. G., Reed, M. H., Dilles, J. H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2): 307–334. https://doi.org/10.2113/gsecongeo.103.2.307

    Article  Google Scholar 

  • Shen, K., Shu, L., Liu, P. R., et al., 2018. Origin and Significance of Mica-Bearing Fluid Inclusions in the Altered Wall Rocks of Wangjiazhuang Copper-Molybdenum Deposit, Zouping Country, Shandong Province. Acta Petrologica Sinica, 34(12): 3509–3524 (in Chinese with English Abstract)

    Google Scholar 

  • Sobolev, V. S., Kostyuk, V. P., 1975. Magmatic Crystallization Based on a Study of Melt Inclusions. Fluid Inclusion Research, 9: 182–235

    Google Scholar 

  • Tang, L. C., 1990. Geological Characteristics of the Pegmatitic Cu-Au Deposit in the Zouping Volcanic Basin, Shandong Province. Geological Review, 36(1): 85–87 (in Chinese)

    Google Scholar 

  • van den Kerkhof, A. M., Hein, U. F., 2001. Fluid Inclusion Petrography. Lithos, 55(1/2/3/4): 27–47. https://doi.org/10.1016/s0024-4937(00)00037-2

    Article  Google Scholar 

  • Wang, H., Fu, B., Xu, Z. W., et al., 2015. Geology, Geochemistry, and Geochronology of the Wangjiazhuang Porphyry-Breccia Cu(-Mo) Deposit in the Zouping Volcanic Basin, Eastern North China Block. Ore Geology Reviews, 67: 336–353. https://doi.org/10.1016/j.oregeorev.2014.12.010

    Article  Google Scholar 

  • Wark, D. A., Spear, F. S., 2005. Titanium in Quartz: Cathodoluminescence and Thermometry. Geochimica et Cosmochica Acta, 69(Suppl.): A592

    Google Scholar 

  • Watt, G. R., Wright, P., Galloway, S., et al., 1997. Cathodoluminescence and Trace Element Zoning in Quartz Phenocrysts and Xenocrysts. Geochimica et Cosmochimica Acta, 61(20): 4337–4348. https://doi.org/10.1016/s0016-7037(97)00248-2

    Article  Google Scholar 

  • Wiebe, R. A., Wark, D. A., Hawkins, D. P., 2007. Insights from Quartz Cathodoluminescence Zoning into Crystallization of the Vinalhaven Granite, Coastal Maine. Contributions to Mineralogy and Petrology, 154(4): 439–453. https://doi.org/10.1007/s00410-007-0202-z

    Article  Google Scholar 

  • Yang, D. P., Liu, P. R., Chi, N. J., et al., 2016. The Discovery of Uranium and Platinum Group Minerals in the Wangjiazhuang Copper Deposit, Zouping, Shandong Province, and Its Geological Significance. Acta Petrologica et Mineralogica, 35(5): 863–876 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, K., Bodnar, R. J., 1994. Magmatic-Hydrothermal Evolution in the “Bottoms” of Porphyry Copper Systems: Evidence from Silicate Melt and Aqueous Fluid Inclusions in Granitoid Intrusions in the Gyeongsang Basin, South Korea. International Geology Review, 36(7): 608–628. https://doi.org/10.1080/00206819409465478

    Article  Google Scholar 

  • Yuan, S. R., Li, B. F., 1987. The Basic Characteristics of the Volcano Structure of the Zouping Basin, Shandong Province. Geological Review, 33: 5–11 (in Chinese)

    Google Scholar 

  • Yuan, S. R., Li, B. F., 1988. The Characteristics of Alteration of the Wangjiazhuang Porphyry Deposit, Zouping, Shandong Province. Geological Review, 34(1): 36–44 (in Chinese)

    Google Scholar 

  • Zhang, J., Xu, Z. W., Li, H. Y., et al., 2008. The Mineralization Geochemistry of the Wangjiazhuang Copper Deposit in Zouping County, Shandong Province, and a Discussion on Its Genesis. Geological Review, 54(4): 466–476 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Chen Li from Peking University for assistance with the scanning electron microscope analysis. This study was financially supported by the Key R & D Program of China (No. 2016YFC0600606), the Key R & D Program of Shandong Province (Nos. 2017CXGC1601, 2017CXGC1602, 2017CXGC1603), the National Natural Science Foundation of China (Nos. 41140025, 41672084, 41372086, 41503038) and the Special Fund for “Taishan Scholars” Project in Shandong Province. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1025-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Shen, K., Yang, R. et al. SEM-CL Study of Quartz Containing Fluid Inclusions in Wangjiazhuang Porphyry Copper (-Molybdenum) Deposit, Western Shandong, China. J. Earth Sci. 31, 330–341 (2020). https://doi.org/10.1007/s12583-019-1025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1025-3

Key words

Navigation