Skip to main content
Log in

PSCRIdb: A database of regulatory interactions and networks of pluripotent stem cell lines

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Pluripotency in stem cells is regulated by a complex network between the transcription factors, signaling molecules, mRNAs, and epigenetic regulators like non-coding RNAs. Different pluripotent stem cell (PSC) lines were isolated and characterized to study the regulatory network topology to understand the mechanism that control developmental potential of pluripotent cells. PSCRIdb is a manually curated database of regulatory interactions including protein–protein, protein–DNA, gene–gene, and miRNA–mRNA interactions in mouse and human pluripotent stem cells including embryonic stem cells and embryonic carcinoma cells. At present, 22 different mouse and human pluripotent stem-cell-line-specific regulatory interactions are compiled in the database. Detailed information of the four types of interaction data are presented in tabular format and graphical network view in Cytoscape layout. The database is available at http://bicresources.jcbose.ac.in/ssaha4/pscridb. The database contains 3037 entries of experimentally validated molecular interactions that can be useful for systematic study of pluripotency integrating multi-omics data. In summary, the database can be a useful resource for identification of regulatory networks present in different pluripotent stem cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

PSC:

Pluripotent stem cell

ChIP-chip/seq:

Chromatin immunoprecipitation followed by microarrays/sequencing

AP-MS:

Affinity-purification followed by mass-spectrometry

IP-MS:

Immunoprecipitation followed by mass-spectrometry

ChIP-PET:

Chromatinb immunoprecipitation followed by paired-end tag sequencing

LOI:

Loss of imprinting

PIRN:

Pluripotent integrated regulatory network

References

  • Avior Y, Sagi I and Benvenisty N 2016 Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17 170–182

    Article  CAS  Google Scholar 

  • Bar S, Schachter M, Eldar-Geva T and Benvenisty N 2017 Large-scale analysis of loss of imprinting in human pluripotent stem cells. Cell Rep. 19 957–968

    Article  CAS  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, et al. 2005 Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 947–956

    Article  CAS  Google Scholar 

  • Chaerkady R, Kerr CL, Kandasamy K, Marimuthu A, Gearhart JD and Pandey A 2010 Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics 10 1359–1373

    Article  CAS  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, et al. 2008 Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133 1106–1117

    Article  CAS  Google Scholar 

  • Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, et al. 2009 Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5 111–123

    Article  CAS  Google Scholar 

  • Gu KL, Zhang Q, Yan Y, Li TT, Duan FF, Hao J, Wang XW, Shi M, et al. 2016 Pluripotency-associated mir-290/302 family of micrornas promote the dismantling of naive pluripotency. Cell Res. 26 350–366

    Article  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J and Orkin SH 2008 An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132 1049–1061

    Article  CAS  Google Scholar 

  • Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN, Tuck AC, Gao X, et al. 2015 Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17 471–485

    Article  CAS  Google Scholar 

  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, et al. 2006 The oct4 and nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38 431–440

    Article  CAS  Google Scholar 

  • Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, Tyson LJ, Park K, et al. 2013 Stemcelldb: The human pluripotent stem cell database at the national institutes of health. Stem Cell Res. 1 57–66

    Article  Google Scholar 

  • Muller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, et al. 2008 Regulatory networks define phenotypic classes of human stem cell lines. Nature 455 401–405

    Article  Google Scholar 

  • Pinto JP, Machado RSR, Magno R, Oliveira DV, Machado S, Andrade RP, Braganca J, Duarte I and Futschik ME 2018 Stemmapper: A curated gene expression database for stem cell lineage analysis. Nucleic Acids Res. 46 D788–D793

    Article  CAS  Google Scholar 

  • Sandie R, Palidwor GA, Huska MR, Porter CJ, Krzyzanowski PM, Muro EM, Perez-Iratxeta C and Andrade-Navarro MA 2009 Recent developments in stembase: A tool to study gene expression in human and murine stem cells. BMC Research Notes 2 39

    Article  Google Scholar 

  • Schulz H, Kolde R, Adler P, Aksoy I, Anastassiadis K, Bader M, Billon N, Boeuf H, et al. 2009 The fungenes database: A genomics resource for mouse embryonic stem cell differentiation. PLoS One 4 e6804

    Article  Google Scholar 

  • Som A, Harder C, Greber B, Siatkowski M, Paudel Y, Warsow G, Cap C, Scholer H and Fuellen G 2010 The plurinetwork: An electronic representation of the network underlying pluripotency in mouse, and its applications. PLoS One 5 e15165

    Article  Google Scholar 

  • Takahashi K and Yamanaka S 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 663–676

    Article  CAS  Google Scholar 

  • Tofoli FA, Dasso M, Morato-Marques M, Nunes K, Pereira LA, da Silva GS, Fonseca SA, Costas RM, et al. 2016 Increasing the genetic admixture of available lines of human pluripotent stem cells. Sci. Rep. 6 34699

    Article  CAS  Google Scholar 

  • van den Berg DL, Snoek T, Mullin NP, Yates A, Bezstarosti K, Demmers J, Chambers I and Poot RA 2010 An oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6 369–381

    Article  Google Scholar 

  • Xu H, Ang YS, Sevilla A, Lemischka IR and Ma’ayan A 2014 Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput. Biol. 10 e1003777

    Article  Google Scholar 

  • Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR and Ma’ayan A 2013 Escape: Database for integrating high-content published data collected from human and mouse embryonic stem cells. Database https://doi.org/10.1093/database/bat045

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA and Kosik KS 2009 Microrna-145 regulates oct4, sox2, and klf4 and represses pluripotency in human embryonic stem cells. Cell 137 647–658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Division of Bioinformatics, Bose Institute, Kolkata, for providing the infrastructure. This work was supported by Indian Council of Medical Research (ICMR), India (ICMR-BIC/12(30)/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Saha.

Additional information

Communicated by BJ RAO.

Corresponding editor: BJ Rao

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, K., Jana, T., Ghosh, Z. et al. PSCRIdb: A database of regulatory interactions and networks of pluripotent stem cell lines. J Biosci 45, 53 (2020). https://doi.org/10.1007/s12038-020-00027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00027-4

Keywords

Navigation