Skip to main content

Advertisement

Log in

Effects of nicorandil on neurobehavioral function, BBB integrity, edema and stereological parameters of the brain in the sub-acute phase of stroke in a rat model

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Blood–brain barrier (BBB) disruption, inflammation, and cell death are the pathogenic mechanisms of cerebral ischemia/reperfusion (I/R) injury. Nicorandil protects ischemic injury via some of these mechanisms. The aim of this study was to investigate the therapeutic effects of this drug on the brain ischemia after transient middle cerebral artery occlusion (MCAO) and clarify the NF-κB and Nrf2-dependent mechanisms modulated by this drug. Sixty-six rats were randomized into sham, MCAO and MCAO + nicorandil groups with oral gavage for 3 days. Cerebral I/R injury were induced by a transient MCAO for 1 h and neurobehavioral scores were performed for 3 days. In addition to measurement of BBB disruption and brain water content, the total and infarct volume, density, and total number of neurons, non-neurons and dead neurons in the right cortex were estimated by unbiased stereological methods. RT-PCR was performed to analyze the expression levels of NF-κB and Nrf2. Although nicorandil treatment in the sub-acute brain ischemia did not have a prominent effect on neurobehavioral function and number of neurons, non-neurons and dead neurons probably through up-regulation of NF-κB, it, however, improved ischemia-induced BBB disruption and brain edema and showed a significant reduction in the infarction volume probably through up-regulation of Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abdel‐Raheem IT, Taye A and Abouzied MM 2013 Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin‐induced cardiotoxicity in rats. Basic Clin. Pharmacol. Toxicol. 113 158–166

    CAS  PubMed  Google Scholar 

  • Abusaad I, MacKay D, Zhao J, Stanford P, Collier DA, et al. 1999 Stereological estimation of the total number of neurons in the murine hippocampus using the optical disector. J. Comp. Neurol. 408 560–566

    CAS  PubMed  Google Scholar 

  • Adams Jr HP, Del Zoppo G, Alberts MJ, Bhatt DL, Brass L, et al. 2007 Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation 115 e478–e534

    PubMed  Google Scholar 

  • Akao M, Teshima Y and Marban E 2002 Antiapoptotic effect of nicorandil mediated by mitochondrial atp-sensitive potassium channels in cultured cardiac myocytes. J. Am. Coll. Cardiol. 40 803–810

    CAS  PubMed  Google Scholar 

  • Aldskogius H and Kozlova EN 1998 Central neuron-glial and glial-glial interactions following axon injury. Prog. Neurobiol. 55 1–26

    CAS  PubMed  Google Scholar 

  • Atillo A, Söderfeldt B, Kalimo H, Olsson Y and Siesjö B 1983 Pathogenesis of brain lesions caused by experimental epilepsy. Acta Neuropathol. 59 11–24

    CAS  PubMed  Google Scholar 

  • Auer R, Kalimo H, Olsson Y and Siesjö B 1985 The temporal evolution of hypoglycemic brain damage. Acta Neuropathol. 67 13–24

    CAS  PubMed  Google Scholar 

  • Balan IS, Fiskum G, Hazelton J, Cotto-Cumba C and Rosenthal RE 2006 Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke 37 3008–3013

    PubMed  PubMed Central  Google Scholar 

  • Ballabh P, Braun A and Nedergaard M 2004 The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16 1–13

    CAS  PubMed  Google Scholar 

  • Benardais K, Pul R, Singh V, Skripuletz T, Lee DH, et al. 2013 Effects of fumaric acid esters on blood–brain barrier tight junction proteins. Neurosci. Lett. 555 165–170

    CAS  PubMed  Google Scholar 

  • Berger R, Garnier Y and Jensen A 2002 Perinatal brain damage: underlying mechanisms and neuroprotective strategies. J. Soc. Gynecol. Investig. 9 319–328

    CAS  PubMed  Google Scholar 

  • Busija DW, Gaspar T, Domoki F, Katakam PV and Bari F 2008 Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv. Drug Deliv. Rev. 60 1471–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael ST 2005 Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2 396–409

    PubMed  PubMed Central  Google Scholar 

  • César IC, Godin AM, Araujo DP, Oliveira FC, Menezes RR, et al. 2014 Synthesis, antinociceptive activity and pharmacokinetic profiles of nicorandil and its isomers. Bioorg. Med. Chem. 22 2783–2790

    PubMed  Google Scholar 

  • Coyle JT and Puttfarcken P 1993 Oxidative stress, glutamate, and neurodegenerative disorders. Science 262 689–695

    CAS  PubMed  Google Scholar 

  • Csordas A, Mazlo M and Gallyas F 2003 Recovery versus death of” dark”(compacted) neurons in non-impaired parenchymal environment: light and electron microscopic observations. Acta Neuropathol. 106 37–49

    CAS  PubMed  Google Scholar 

  • Donnan GA, Fisher M, Macleod M and Davis SM 2008 Stroke. Lancet 371 1612–1623

    CAS  PubMed  Google Scholar 

  • Dostovic Z, Dostovic E, Smajlovic D, Ibrahimagic OC and Avdic L 2016 Brain edema after ischaemic stroke. Med. Arch. 70 339

    PubMed  PubMed Central  Google Scholar 

  • Doyle KP, Simon RP and Stenzel-Poore MP 2008 Mechanisms of ischemic brain damage. Neuropharmacology 55 310–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durukan A and Tatlisumak T 2007 Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav. 87 179–197

    CAS  PubMed  Google Scholar 

  • El-Kashef DH 2018 Nicorandil ameliorates pulmonary inflammation and fibrosis in a rat model of silicosis. Int. Immunopharmacol. 64 289–297

    CAS  PubMed  Google Scholar 

  • Fernández-López D, Faustino J, Daneman R, Zhou L, Lee SY, et al. 2012 Blood–brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J. Neurosci. 32 9588–9600

    PubMed  PubMed Central  Google Scholar 

  • Fluri F, Schuhmann MK and Kleinschnitz C 2015 Animal models of ischemic stroke and their application in clinical research. Drug Des. Dev. Ther. 9 3445

    CAS  Google Scholar 

  • Gabbott PL and Stewart MG 1987 Distribution of neurons and glia in the visual cortex (area 17) of the adult albino rat: a quantitative description. Neuroscience 21 833–845

    CAS  PubMed  Google Scholar 

  • Gerriets T, Stolz E, Walberer M, Muller C, Kluge A, et al. 2004 Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35 566–571

    CAS  PubMed  Google Scholar 

  • Gotoh O, Asano T, Koide T and Takakura K 1985 Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke 16 101–109

    CAS  PubMed  Google Scholar 

  • Hamann GF, Okada Y and del Zoppo GJ 1996 Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J. Cereb. Blood Flow. Metab. 16 1373–1378

    CAS  PubMed  Google Scholar 

  • He WK, Su Q, Liang JB, Wang XT, Sun YH and Li L 2018 Nicorandil pretreatment inhibits myocardial apoptosis and improves cardiac function after coronary microembolization in rats. J. Geriatr. Cardiol. 15 591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard V and Reed M 2004 Unbiased stereology: three-dimensional measurement in microscopy. Garland Science, New York

    Google Scholar 

  • Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, et al. 2000 Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275 16023–16029

    CAS  PubMed  Google Scholar 

  • Kasono K, Yasu T, Kakehashi A, Kinoshita N, Tamemoto H, et al. 2004 Nicorandil improves diabetes and rat islet beta-cell damage induced by streptozotocin in vivo and in vitro. Eur. J. Endocrinol. 151 277–285

    CAS  PubMed  Google Scholar 

  • Kassner A and Merali Z 2015 Assessment of blood–brain barrier disruption in stroke. Stroke 46 3310–3315

    PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N and Biswal S 2007 Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47 89–116

    CAS  PubMed  Google Scholar 

  • Kim JH, Jeong MH, Yun KH, Kim KH, Kang DK, et al. 2005 Myocardial protective effects of nicorandil during percutaneous coronary intervention in patients with unstable angina. Circ. J. 69 306–310

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Yamaguchi S, Okada K, Suyama N, Bokura K, et al. 1992 Effects of nicorandil on regional cerebral blood flow in patients with chronic cerebral infarction. Preliminary communication. Arzneimittelforschung 42 1086–1089

    CAS  PubMed  Google Scholar 

  • Koizumi J 1986 Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn. J. Stroke 8 1–8

    Google Scholar 

  • Kong J, Ren G, Jia N, Wang Y, Zhang H, et al. 2013 Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer’s disease. Eur. Neurol. 70 233–241

    CAS  PubMed  Google Scholar 

  • Latour LL, Kang DW, Ezzeddine MA, Chalela JA and Warach S 2004 Early blood–brain barrier disruption in human focal brain ischemia. Ann. Neurol. 56 468–477

    PubMed  Google Scholar 

  • Lee T-M, Lin M-S, Tsai C-H and Chang N-C 2005 Effect of ischaemic preconditioning on regional release of inflammatory markers. Clin. Sci. 109 267–276

    CAS  Google Scholar 

  • Li D, Huang B, Liu J, Li L and Li X 2013 Decreased brain KATP channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by sevoflurane post-conditioning in diabetic rats. PLoS One 8 e73334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Wang X and Yu Z 2016 Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem. Pharmacol. 5 213–219

    Google Scholar 

  • Ling EA, Paterson JA, Privat A, Mori S and Leblond CP 1973 Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J. Comp. Neurol. 149 43–71

    CAS  PubMed  Google Scholar 

  • Lipsanen A and Jolkkonen J 2011 Experimental approaches to study functional recovery following cerebral ischemia. Cell. Mol. Life Sci. 68 3007–3017

    CAS  PubMed  Google Scholar 

  • Lipton P 1999 Ischemic cell death in brain neurons. Physiol. Rev. 79 1431–1568

    CAS  PubMed  Google Scholar 

  • Liu D, Pitta M, Lee J-H, Ray B, Lahiri DK, et al. 2010 The K ATP channel activator diazoxide ameliorates amyloid-β and Tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer’s disease. J. Alzheimers Dis. 22 443–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ and Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402–408

    CAS  Google Scholar 

  • Lourbopoulos A, Karacostas D, Artemis N, Milonas I and Grigoriadis N 2008 Effectiveness of a new modified intraluminal suture for temporary middle cerebral artery occlusion in rats of various weight. J. Neurosci. Methods 173 225–234

    PubMed  Google Scholar 

  • Mattson MP and Camandola S 2001 NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107 247–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKeon RJ, Hoke A and Silver J 1995 Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136 32–43

    CAS  PubMed  Google Scholar 

  • Mouton PR 2003 Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists. By Peter R Mouton. Q Rev. Biol. 78 86

    Google Scholar 

  • Nag S, Manias JL and Stewart DJ 2009 Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 118 197–217

    PubMed  Google Scholar 

  • Namavar MR, Raminfard S, Jahromi ZV and Azari H 2012 Effects of high-fat diet on the numerical density and number of neuronal cells and the volume of the mouse hypothalamus: a stereological study. Anat. Cell Biol. 45 178–184

    PubMed  PubMed Central  Google Scholar 

  • Nguyen T, Nioi P and Pickett CB 2009 The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284 13291–13295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niv F, Keiner S, Krishna -K, Witte OW, Lie DC, et al. 2012 Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke 43 2468–2475

    PubMed  Google Scholar 

  • Pan N, Lu L-Y, Li M, Wang G-H, Sun F-Y, et al. 2017 Xyloketal B alleviates cerebral infarction and neurologic deficits in a mouse stroke model by suppressing the ROS/TLR4/NF-ΰ B inflammatory signaling pathway. Acta Pharmacol. Sin. 38 1236–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persson L, Hardemark HG, Bolander HG, Hillered L and Olsson Y 1989 Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 20 641–645

    CAS  PubMed  Google Scholar 

  • Petito C and Pulsinelli W 1984 Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J. Neuropathol. Exp. Neurol. 43 141–153

    CAS  PubMed  Google Scholar 

  • Pillai DR, Dittmar MS, Baldaranov D, Heidemann RM, Henning EC, et al. 2009 Cerebral ischemia-reperfusion injury in rats—a 3 T MRI study on biphasic blood–brain barrier opening and the dynamics of edema formation. J. Cereb. Blood Flow. Metab. 29 1846–1855

    PubMed  PubMed Central  Google Scholar 

  • Pithadia AB, Panchal SS and Patel DJ 2017 Neuroprotective effects of potassium channel openers on cerebral ischemia–reperfusion injury in diabetic rats. Bull. Fac. Pharm. 55 95–100

    Google Scholar 

  • Raboel PH, Bartek J, Jr., Andresen M, Bellander BM and Romner B 2012 Intracranial pressure monitoring: invasive versus non-invasive methods—a review. Crit. Care Res. Pract. 2012 950393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raza SS, Khan MM, Ahmad A, Ashafaq M, Islam F, et al. 2013 Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience 230 157–171

    CAS  PubMed  Google Scholar 

  • Ridder DA and Schwaninger M 2009 NF-kappaB signaling in cerebral ischemia. Neuroscience 158 995–1006

    CAS  PubMed  Google Scholar 

  • Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, et al. 2011 Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res. 1375 137–146

    CAS  PubMed  Google Scholar 

  • Rousselet E, Kriz J and Seidah NG 2012 Mouse model of intraluminal MCAO: cerebral infarct evaluation by cresyl violet staining. J. Vis. Exp. 10.3791/4038

    Article  PubMed  PubMed Central  Google Scholar 

  • Safari A, Fazeli M, Namavar MR, Tanideh N, Jafari P, et al. 2017 Therapeutic effects of oral dimethyl fumarate on stroke induced by middle cerebral artery occlusion: An animal experimental study. Restor. Neurol. Neurosci. 35 265–274

    CAS  PubMed  Google Scholar 

  • Sandoval KE and Witt KA 2008 Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 32 200–219

    CAS  PubMed  Google Scholar 

  • Sarti C, Rastenyte D, Cepaitis Z and Tuomilehto J 2000 International trends in mortality from stroke, 1968 to 1994. Stroke 31 1588–1601

    CAS  PubMed  Google Scholar 

  • Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, et al. 1999 NF-κB is activated and promotes cell death in focal cerebral ischemia. Nat. Med. 5 554

    CAS  PubMed  Google Scholar 

  • Shi H, Jing X, Wei X, Perez RG, Ren M, et al. 2015 S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. J. Neurochem. 133 298–308

    CAS  PubMed  Google Scholar 

  • Shimamura N, Matchett G, Tsubokawa T, Ohkuma H and Zhang J 2006 Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J. Neurosci. Methods 156 161–165

    CAS  PubMed  Google Scholar 

  • Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, et al. 2002 MitoKATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am. J. Physiol. Heart Circ. Physiol. 283 H1005–H1011

    CAS  PubMed  Google Scholar 

  • Shin HY, Kim JH, Phi JH, Park CK, Kim JE, et al. 2008 Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia. J. Neurosci. Res. 86 356–367

    CAS  PubMed  Google Scholar 

  • Siegel GJ 1999 Basic neurochemistry : molecular, cellular, and medical aspects. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Song M and Yu SP 2014 Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl. Stroke Res. 5 17–27

    CAS  PubMed  Google Scholar 

  • Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, et al. 2000 Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. J. Cereb. Blood Flow. Metab. 20 592–603

    CAS  PubMed  Google Scholar 

  • Takagi K, Zhao W, Busto R and Ginsberg MD 1995 Local hemodynamic changes during transient middle cerebral artery occlusion and recirculation in the rat: a [14C]iodoantipyrine autoradiographic study. Brain Res. 691 160–168

    CAS  PubMed  Google Scholar 

  • Teshima Y, Akao M, Baumgartner WA and Marbán E 2003 Nicorandil prevents oxidative stress-induced apoptosis in neurons by activating mitochondrial ATP-sensitive potassium channels. Brain Res. 990 45–50

    CAS  PubMed  Google Scholar 

  • Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, et al. 1988 Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J. Cereb. Blood Flow. Metab. 8 282–284

    CAS  PubMed  Google Scholar 

  • Vakili A, Hossienzadeh F and Sadogh T 2007 Effect of aminoguanidine on post-ischemic brain edema in transient model of focal cerebral ischemia. Brain Res. 1170 97–102

    CAS  PubMed  Google Scholar 

  • von Bartheld CS, Bahney J and Herculano-Houzel S 2016 The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 524 3865–3895

    Google Scholar 

  • Wang L, Zhu Q-L, Wang G-Z, Deng T-Z, Chen R, et al. 2011 The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia–ischemia–reperfusion in brain. Neurosci. Lett. 491 63–67

    CAS  PubMed  Google Scholar 

  • Wang P, Wang S, Li S, Chang Q and Wang S 2008 effect of nicorandil on infarct volume and marker enzyme activity in mitochondria of rats with cerebral ischemia/reperfusion injury. Neural. Regen. Res. 3 501–504

    CAS  Google Scholar 

  • Watanabe M, Katsura K-i, Ohsawa I, Mizukoshi G, Takahashi K, et al. 2008 Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res. 1238 199–207

    CAS  PubMed  Google Scholar 

  • Wolman M, Klatzo I, Chui E, Wilmes F, Nishimoto K, et al. 1981 Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol. 54 55–61

    CAS  PubMed  Google Scholar 

  • Wu H, Ye M, Yang J, Ding J, Yang J, et al. 2015 Nicorandil Protects the Heart from Ischemia/Reperfusion Injury by Attenuating Endoplasmic Reticulum Response-induced Apoptosis Through PI3K/Akt Signaling Pathway. Cell Physiol. Biochem. 35 2320–2332

    CAS  PubMed  Google Scholar 

  • Yang J, Li Q, Wang Z, Qi C, Han X, et al. 2017 Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice. Sci. Rep. 7 40358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Miao W, Liu Z, Han W, Shi K, et al. 2016 Dimethyl Fumarate and Monomethyl Fumarate Promote Post-Ischemic Recovery in Mice. Transl. Stroke Res. 7 535–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Cui J, Lv B and Yu B 2015 Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int. J. Mol. Med. 36 415–423

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu Y, Ma Y and Lu Y 2007 Protective effect of ATP sensitive potassium channel opener on cerebral ischemia/reperfusion injury and its signal transduction mechanism. Zhongguo Wei Zhong Bing J.i J.iu Yi Xue 19 221–224

  • Zhang H, Song L-C, Jia C-H and Lu Y-L 2008 Effects of ATP sensitive potassium channel opener on the mRNA and protein expressions of caspase-12 after cerebral ischemia-reperfusion in rats. Neurosci. Bull. 24 7–12

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, et al. 2005 Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J. Cereb. Blood Flow. Metab. 25 30–40

    PubMed  Google Scholar 

  • Zhao X, Sun G, Zhang J, Ting S-M, Gonzales N, et al. 2015 Dimethyl fumarate protects brain from damage produced by intracerebral hemorrhage by mechanism involving Nrf2. Stroke 46 1923–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Li J, Rosenbaum DM and Barone FC 2011 Thrombopoietin Protects the Brain and Improves Sensorimotor Functions: Reduction of Stroke-Induced MMP-9 Upregulation and Blood—Brain Barrier Injury. J. Cereb. Blood Flow. Meta. 31 924–933

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. H Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript. The present article was extracted from a PhD thesis was written by MO, and was financially supported by Shahid Beheshti University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Bigdeli or Mohammad Reza Namavar.

Additional information

Communicated by Neeraj Jain.

Corresponding editor: Neeraj Jain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owjfard, M., Bigdeli, M.R., Safari, A. et al. Effects of nicorandil on neurobehavioral function, BBB integrity, edema and stereological parameters of the brain in the sub-acute phase of stroke in a rat model. J Biosci 45, 49 (2020). https://doi.org/10.1007/s12038-020-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-0021-1

Keywords

Navigation