Skip to main content
Log in

Coal slime waste: a promising precursor to develop highly porous activated carbon for supercapacitors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Effective processing and use of coal slime is of great significance to protect the environment and save resources. Different coal slimes (untreated with 43 wt% ash content, crushed and flotation treated with 10 wt% ash content, and pre-carbonized) were activated with KOH to prepare porous activated carbon. The results show the activated carbon prepared from coal slime with 10 wt% ash had high specific surface area (3037 m2/g) and pore volume (1.66 cm3/g), which was ascribed to the suitable contents of minerals as template and oxygen-containing functional groups. Electrochemical measurements exhibited the best specific capacitance of 220 F/g at 0.1 A/g and the cycle stability of over 100% capacitance retention after 1000 cycles at 5 A/g in 6 M KOH solution. Due to the high specific surface area, superior electrochemical performance, and facile and low cost, developing highly porous activated carbon for supercapacitors is one alternative way for effective use of coal slime waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khomenko V, Raymundo-Piñero E, Béguin F (2010) A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J Power Sources 4234:195. https://doi.org/10.1016/j.jpowsour.2010.01.006

    Article  CAS  Google Scholar 

  2. Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 6899:7. https://doi.org/10.1021/nn402077v

    Article  CAS  Google Scholar 

  3. Xu B, Wu F, Su Y, Cao G, Chen S, Zhou Z, Yang Y (2008) Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity. Electrochim Acta 7730:53. https://doi.org/10.1016/j.electacta.2008.05.033

    Article  CAS  Google Scholar 

  4. Lim E, Jo C, Lee J (2016) A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale 7827:8. https://doi.org/10.1039/c6nr00796a

    Article  Google Scholar 

  5. Chang L, Stacchiola DJ, Hu YH (2017) An ideal electrode material, 3D surface-microporous graphene for supercapacitors with ultrahigh areal capacitance. ACS Appl Mater Interfaces 24655:9. https://doi.org/10.1021/acsami.7b07381

    Article  CAS  Google Scholar 

  6. Zhang X, Xiao N, Qiu J (2018) Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors. Fuel Process Technol 10:175. https://doi.org/10.1016/j.fuproc.2018.03.001

    Article  CAS  Google Scholar 

  7. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 729:9. https://doi.org/10.1039/C5EE03109E

    Article  CAS  Google Scholar 

  8. Li L, Liu E, Li J, Yang Y, Shen H, Huang Z, Xiang X, Li W (2010) A doped activated carbon prepared from polyaniline for high performance supercapacitors. J Power Sources 1516:195. https://doi.org/10.1016/j.jpowsour.2009.09.016

    Article  CAS  Google Scholar 

  9. Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M (2010) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 3083:17. https://doi.org/10.1002/adfm.200700518

    Article  CAS  Google Scholar 

  10. Zhu K, Wang Y, Tang JA, Guo S, Gao Z, Wei Y, Chen G, Gao Y (2017) A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Mater Chem Front 958:1. https://doi.org/10.1039/C6QM00196C

    Article  Google Scholar 

  11. Areir M, Xu Y, Zhang R, Harrison D, Fyson J, Pei E (2017) A study of 3D printed active carbon electrode for the manufacture of electric double-layer capacitors. J Manuf Process 351:25. https://doi.org/10.1016/j.jmapro.2016.12.020

    Article  Google Scholar 

  12. Li J, Xiao R, Li M, Zhang H, Wu S, Xia C (2019) Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process Technol 239:192. https://doi.org/10.1016/j.fuproc.2019.04.037

    Article  CAS  Google Scholar 

  13. Yoon S, Lee J, Hyeon T, Oh SM (2000) Electric double-layer capacitor performance of a new mesoporous carbon. J Electrochem Soc 2507:147. https://doi.org/10.1149/1.1393561

    Article  Google Scholar 

  14. Kalpana D, Karthikeyan K, Renganathan NG, Lee YS (2008) Camphoric carbon nanobeads—a new electrode material for supercapacitors. Electrochem Commun 977:10. https://doi.org/10.1016/j.elecom.2008.04.027

    Article  CAS  Google Scholar 

  15. Gonçalves M, Castro CS, Boas IKV, Soler FC, Pinto EDC, Lavall RL, Carvalho WA (2019) Glycerin waste as sustainable precursor for activated carbon production: adsorption properties and application in supercapacitors. J Environ Chem Eng 103059:7. https://doi.org/10.1016/j.jece.2019.103059

    Article  CAS  Google Scholar 

  16. Sattayarut V, Chanthad C, Khemthong P, Kuboon S, Wanchaem T, Phonyiem M, Obata M, Fujishige M, Takeuchi K, Wongwiriyapan W, Khanchaitit P, Endo M (2019) Preparation and electrochemical performance of nitrogen-enriched activated carbon derived from silkworm pupae waste. RSC Adv 9878:9. https://doi.org/10.1039/C9RA01090D

    Article  Google Scholar 

  17. Li Y, Li J, Chen P, Chen J, Shen L, Zhu X, Cheng G (2019) The effect of ultra-fine coal on the flotation behavior of silica insubbituminous coal reverse flotation. Powder Technol 457:342. https://doi.org/10.1016/j.powtec.2018.10.014

    Article  CAS  Google Scholar 

  18. Cai Y, Du M, Wang S, Liu L (2018) Flotation characteristics of oxidized coal slimes withinlow-rank metamorphic. Powder Technol 34:340. https://doi.org/10.1016/j.powtec.2018.09.006

    Article  CAS  Google Scholar 

  19. Li L, Wang X, Wang S, Cao Z, Wu Z, Wang H, Gao Y, Liu J (2016) Activated carbon prepared from lignite as supercapacitor electrode materials. Electroanalysis 243:28. https://doi.org/10.1002/elan.201500532

    Article  CAS  Google Scholar 

  20. Chang P, Qin Z (2017) Facile fabrication of hierarchical porous carbon based on extract separated from coal with outstanding electrochemical performance. RSC Adv 33843:7. https://doi.org/10.1039/C7RA05437H

    Article  Google Scholar 

  21. Zhang J, Jin L, Cheng J, Hu H (2013) Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon 221:55. https://doi.org/10.1016/j.carbon.2012.12.030

    Article  CAS  Google Scholar 

  22. Xing BL, Guo H, Chen LJ, Chen ZF, Zhang CX, Huang GX, Xie W, Yu JL (2015) Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Process Technol 734:138. https://doi.org/10.1016/j.fuproc.2015.07.017

    Article  CAS  Google Scholar 

  23. He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 4911:50. https://doi.org/10.1016/j.carbon.2012.06.020

    Article  CAS  Google Scholar 

  24. He X, Zhao N, Qiu J, Xiao N, Yu M, Yu C, Zhang X, Zheng M (2013) Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 astemplate and activation agent coupled with KOH activation. J Mater Chem A 9440:1. https://doi.org/10.1039/C3TA10501F

    Article  Google Scholar 

  25. Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 868:10. https://doi.org/10.1016/j.elecom.2008.04.003

    Article  CAS  Google Scholar 

  26. Xu B, Hou S, Cao G, Wu F, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 19088:22. https://doi.org/10.1039/C2JM32759G

    Article  Google Scholar 

  27. Chunlan L, Shaoping X, Yixiong G, Shuqin L, Changhou L (2005) Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 2295:43. https://doi.org/10.1016/j.carbon.2005.04.009

    Article  CAS  Google Scholar 

  28. Gao S, Tang Y, Wang L, Liu L, Sun Z, Wang S, Zhao H, Kong L, Jia D (2018) Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustain Chem Eng 3255:6. https://doi.org/10.1021/acssuschemeng.7b03421

    Article  CAS  Google Scholar 

  29. Tallo I, Thomberg T, Kurig H, Jänes A, Kontturi K, Lust E (2013) Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants. J Solid State Electrochem 19:17. https://doi.org/10.1007/s10008-012-1850-0

    Article  CAS  Google Scholar 

  30. Wang L, Wang R, Zhao H, Liu L, Jia D (2015) High rate performance porous carbon prepared from coal for supercapacitors. Mater Lett 85:149. https://doi.org/10.1016/j.matlet.2014.11.051

    Article  CAS  Google Scholar 

  31. Lu Q, Xu Y, Mu S, Li W (2017) The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes. New Carbon Mater 442:32. https://doi.org/10.1016/S1872-5805(17)60133-1

    Article  Google Scholar 

  32. Zhang C, Long D, Xing B, Qiao W, Zhang R, Zhan L, Liang X, Ling L (2008) The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal. Electrochem Commun 1809:10. https://doi.org/10.1016/j.elecom.2008.09.019

    Article  CAS  Google Scholar 

  33. Liu M, Gan L, Xiong W, Xu Z, Zhu D, Chen L (2014) Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J Mater Chem A 2555:2. https://doi.org/10.1039/C3TA14445C

    Article  Google Scholar 

  34. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JG, Ishak MM, Dollah BNM, Hashmi SA (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 254:132. https://doi.org/10.1016/j.biortech.2013.01.044

    Article  CAS  Google Scholar 

  35. Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F, Santamaría R (2007) Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochim Acta 4969:52. https://doi.org/10.1016/j.electacta.2007.01.071

    Article  CAS  Google Scholar 

  36. Chan K, Choi YO, Lee WJ, Yang KS (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 883:50. https://doi.org/10.1016/j.electacta.2004.02.072

    Article  CAS  Google Scholar 

  37. Chao Z, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 290:258. https://doi.org/10.1016/j.jpowsour.2014.01.056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Shaanxi Innovation Capacity Support Program (2018TD-031), Natural Science Foundation of Shaanxi (2018JQ5008) and Fundamental Research Funds for the Central University (XJJ2018127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, J., Wang, K. et al. Coal slime waste: a promising precursor to develop highly porous activated carbon for supercapacitors. Carbon Lett. 30, 657–665 (2020). https://doi.org/10.1007/s42823-020-00138-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00138-w

Keywords

Navigation