Skip to main content

Advertisement

Log in

Avian Beta Diversity in a Neotropical Wetland: the Effects of Flooding and Vegetation Structure

  • Wetlands Conservation
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Habitat heterogeneity in the Pantanal results from flood dynamics and vegetation characteristics. Considering that these impacts affect landbird nesting conditions and food resource availability, species turnover and richness should respond to them. We conducted this study in the northeastern Pantanal, in two dominant habitats, savanna and forest, covering two annual cycles. The objectives were: (1) evaluation of trophic structure, (2) analyses of species dissimilarity patterns, and (3) investigation of whether seasonal changes in the flood regime and/or vegetation characteristics drive these patterns. We used mist nests to acquire data on bird species composition, abundance, and guilds. Insectivore and omnivore species were the predominant guilds. The bird community showed very high overall dissimilarity, with a Jaccard Index of 0.86, with 86% attributed to species replacement and 14% to species nestednesss. This high dissimilarity reflects the reduced number of shared species, mainly between some savannas and forests (12%). Our analyses also showed that habitat characteristics, specifically the differences in vegetation structure and composition, mostly explained the species turnover. Flood seasonality was also an important driver of bird community spatial variability, in which dissimilarities in species composition increased from the terrestrial to the aquatic phases, with the wettest phase being the most dissimilar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamoli JO (1982) Pantanal e suas relações fitogeográficas com os cerrados. Discussão sobre o conceito de "Complexo do Pantanal". In: Anais do 32o Congresso Nacional de Botânica. Sociedade Botânica do Brasil, Teresina, pp 109–119

    Google Scholar 

  • Adis J, Junk WJ (2002) Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biology 47:711–731

    Google Scholar 

  • Adis J, Marques MI, Wantzen KM (2001) First observations on the survival strategies of terricolous arthropods in the northern Pantanal wetland of Brazil. Andrias 15:127–128

    Google Scholar 

  • Aleixo A (1999) Effects of selective logging on a bird community in the Brazilian Atlantic Forest. Condor 101:537–548

    Google Scholar 

  • Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83:557–574

    Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683–693

    PubMed  Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14:19–28

    PubMed  Google Scholar 

  • Anjos L, Volpato GH, Lopes EV, Serafini P, Poletto F, Aleixo A (2007) The importance of riparian forest for the maintenance of bird species richness in an Atlantic forest remnant, southern Brazil. Revista Brasileira de Zoologia 24:1078–1086

    Google Scholar 

  • Antas PTZ (1994) Migration and other movements among the lower Paraná River valley wetlands, Argentina, and the South Brazil/Pantanal wetlands. Bird Conservation International 4:181–190

    Google Scholar 

  • Arieira J, Nunes da Cunha C (2006) Fitossociologia de uma floresta inundável monodominante de Vochysia divergens Pohl (Vochysiaceae), no Pantanal Norte, MT, Brasil. Acta Botanica Brasilica 20:569–580

    Google Scholar 

  • Baláž M, Balážová M (2012) Diversity and abundance of bird communities in three mountain forest stands: effect of the habitat heterogeneity. Polish Journal of Ecology 60:629–634

    Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19:134–143

    Google Scholar 

  • Battirola LD, Adis J, Marques MI, Silva FHO (2007) Comunidade de artrópodes associada à copa de Attalea phalerata Mart. (Arecaceae), durante o período de cheia no Pantanal de Poconé, Mato Grosso, Brasil. Neotropical Entomology 36:640–651

    PubMed  Google Scholar 

  • Battirola LD, Marques MI, Brescovit AD, Neto GHR, Anjos KC (2010) Community of ground Araneae (Arthropoda, Arachnida) in a seasonally flooded forest in the northern region of Pantanal of Mato Grosso, Brazil. Biota Neotropica 10:173–183

    Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques. Academic Press, London

    Google Scholar 

  • Bodmer RE (1990) Responses of ungulates to seasonal inundations in the Amazon floodplain. Journal of Tropical Ecology 6:191–201

    Google Scholar 

  • Boncina A (2000) Comparison of structure and biodiversity in the Rajhevan virgin forest remnant and managed forest in the Dinaric region of Slovenia. Global Ecology and Biogeography 9:201–211

    Google Scholar 

  • Brown KS (1986) Zoogeografia da região do Pantanal Matogrossense. In: I Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal. Embrapa Pantanal, Corumbá, pp 137–182

    Google Scholar 

  • Cintra R, Yamashita C (1990) Habitats, abundância e ocorrência das espécies de aves do Pantanal de Poconé, Mato Grosso, Brasil. Papeis Avulsos de Zoologia 37:1–21

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117–143

    Google Scholar 

  • Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Nuñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science 295:666–669

    CAS  PubMed  Google Scholar 

  • De Cáceres M, Legendre P (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16:951–963

    PubMed  Google Scholar 

  • Devictor V, Julliard R, Jiguet F, Couvet D (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514

    Google Scholar 

  • Díaz L (2006) Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. Forest Ecology and Management 223:54–65

    Google Scholar 

  • Durigan G, Ratter JA (2015) The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology 53:11–15

    Google Scholar 

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13:252–264

    Google Scholar 

  • Figueira JEC, Cintra R, Viana LR, Yamashita AC (2006) Spatial and temporal patterns of bird species diversity in the Pantanal of Mato Grosso, Brazil: implications for conservation. Brazilian Journal of Biology 66:393–404

    CAS  Google Scholar 

  • Fjeldså J (1999) The impact of human forest disturbance on the endemic avifauna of the Udzungwa Mountains, Tanzania. Bird Conservation International 9:47–62

    Google Scholar 

  • Fleishman E, Nally RM, Murphy DD, Walters J, Floyd T (2003) Effects of floristics, physiognomy and non-native vegetation on riparian bird communities in a Mojave Desert watershed. Journal of Animal Ecology 72:484–490

    Google Scholar 

  • Gil-Tena A, Saura S, Brotons L (2007) Effects of forest composition and structure on bird species richness in a Mediterranean context: implications for forest ecosystem management. Forest Ecology and Management 242:470–476

    Google Scholar 

  • Hanzelka J, Reif J (2016) Effects of vegetation structure on the diversity of breeding bird communities in forest stands of non-native black pine (Pinus nigra a.) and black locust (Robinia pseudoacacia L.) in the Czech Republic. Forest Ecology and Management 379:102–113

    Google Scholar 

  • Heckman CW (1998) The Pantanal of Poconé. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62

    CAS  PubMed  Google Scholar 

  • Jankowski J, Ciecka AL, Meyer NY, Rabenold KN (2009) Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology 78:315–327

    PubMed  Google Scholar 

  • Junk WJ (1993) Wetlands of tropical South America. In: Hejny S, Dykyjova D (eds) Whigham Df. Wetlands of the World. Kluwer Publishers, Netherlands, pp 679–739

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In dodge DP (ed) proceedings of international large river symposium. Canadian special publication of fisheries and aquatic sciences 106, Ontario, pp 110–127

  • Junk WJ, Brown M, Campbell IC, Finlayson M, Gopal B, Ramberg L, Warner BG (2006a) The comparative biodiversity of seven globally important wetlands: a synthesis. Aquatic Sciences 68:400–414

    Google Scholar 

  • Junk WJ, Nunes da Cunha C, Wantzen KM, Petermann P, Strussmann C, Marques MI, Adis J (2006b) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68:278–309

    Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schongart J, Schaeffernovelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation-Marine and Freshwater Ecosystems 24:5–22

    Google Scholar 

  • Katuwal HB, Basnet K, Khanal B, Devkota S, Rai SK, Gajurel JP, Scheidegger C, Nobis MP (2016) Seasonal changes in bird species and feeding guilds along elevational gradients of Central Himalayas, Nepal. PLoS One 11(7):e0158362

    PubMed  PubMed Central  Google Scholar 

  • Kessler M, Abrahamczyk S, Bos M, Buchori D, Putra DD, Gradstein SR, Höhn P, Kluge J, Orend F, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecological Applications 19:2142–2156

    PubMed  Google Scholar 

  • Khanaposhtani GM, Kaboli M, Karami M, Etemad V (2012) Effect of habitat complexity on richness, abundance and distributional pattern of forest birds. Journal of Environmental Management 50:296–303

    Google Scholar 

  • Kraft NJ, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:1755–1758

    CAS  PubMed  Google Scholar 

  • Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23:1324–1334

    Google Scholar 

  • Legendre P, Fortin MJ (2010) Comparison of the mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources 10:831–844

    PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75:435–450

    Google Scholar 

  • Legendre P, Fortin MJ, Borcard D (2015) Should the mantel test be used in spatial analysis? Methods in Ecology and Evolution 6:1239–1247

    Google Scholar 

  • Lopes AS, Soares S, Silva EM, Roel AR (2016) Diversidade de insetos e aranhas presentes em diferentes fisionomias no Pantanal, na seca e cheia, Corumbá, MS. Multitemas 22:127–154

    Google Scholar 

  • Mac Nally R, Bennett AF, Brown GW, Lumsden LE, Yen A, Hinkley S, Lillywhite P, Ward D (2002) How well do ecosystem-based planning units represent different components of biodiversity? Ecological Applications 12:900–912

    Google Scholar 

  • MacArthur RW, Recher H, Cody ML (1966) On the relation between habitat selection and species diversity. The American Naturalist 100:319–332

    Google Scholar 

  • Manion G, Ferrier S, Lisk M, Fitzpatrick MC (2014) GDM: Functions for Generalised Dissimilarity Modelling. In: The Comprehensive R archive network. https://cran.r-project.org/web/packages/gdm/index.html of subordinate document.

  • Marques MI, Adis J, Battirola LD, Brescovit AD, Silva FHO, Silva JL (2007) Composição da comunidade de artrópodes associada à copa de Calophyllum brasiliense Cambess. (Guttiferae), no Pantanal de Poconé, MT. Amazoniana 19:131–148

    Google Scholar 

  • Mitchell K (2007) Quantitative analysis by the point-centered quarter method. In: Hobart and William smith colleges. https://arxiv.org/pdf/1010.3303.pdf of subordinate document.

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico

    Google Scholar 

  • Miyazaki T, Tainaka K, Togashi T, Suzuki T, Yoshimura J (2006) Spatial coexistence of phytoplankton species in ecological timescale. Population Ecology 48:107–112

    Google Scholar 

  • Morante-Filho JC, Faria D, Mariano-Neto E, Rhodes J (2015) Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS One 10(6):e0128923

    PubMed  PubMed Central  Google Scholar 

  • Motta-Júnior JC (1990) Estrutura trófica e composição das avifaunas de três habitats terrestres na região central do estado de São Paulo. Ararajuba 1:65–71

    Google Scholar 

  • Nájera A, Simonetti JA (2009) Enhancing avifauna in commercial plantations. Conservation Biology 24:319–324

    PubMed  Google Scholar 

  • Nunes da Cunha C, Junk WJ, Leitão-Filho HF (2007) Woody vegetation in the Pantanal of Mato Grosso, Brazil: a preliminary typology. Amazoniana 19:159–184

    Google Scholar 

  • Peres CA (1994) Primate responses to phenological changes in an Amazonian terra firme forest. Biotropica 26:98–112

    Google Scholar 

  • Petermann P (2011) The birds of the Pantanal. In: Junk WJ, Da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) the Pantanal: ecology, biodiversity and sustainable management of a large Neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 523–564

    Google Scholar 

  • Pinho JB, Aragona M, Hakamada KYP, Marini MA (2017) Migration patterns and seasonal forest use by birds in the Brazilian Pantanal. Bird Conservation International 27:371–387

    Google Scholar 

  • Piratelli A, Pereira MR (2002) Dieta das aves na região leste de Mato Grosso do Sul, Brasil. Ararajuba 10:131–139

    Google Scholar 

  • Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. Embrapa, Brasília

    Google Scholar 

  • Power DM (1975) Similarity among avifauna of the Galapagos Islands. Ecology 56:616–626

    Google Scholar 

  • Qian H, Ricklefs RE (2007) A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters 10:737–744

    PubMed  Google Scholar 

  • Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters 8:15–22

    Google Scholar 

  • Rahayuningsih M, Mardiastuti A, Prasetyo LB, Mulyani YA (2007) Bird community in Burung Island, Karimunjawa National Park, Central Java. Biodiversitas 8:183–187

    Google Scholar 

  • Rebellato L, Nunes da Cunha C (2005) Efeito do "fluxo sazonal mínimo da inundação" sobre a composição e estrutura de um campo inundável no Pantanal de Poconé, MT, Brasil. Acta Botanica Brasilica 19:789–799

    Google Scholar 

  • Remsen Jr JV, Cadena CD, Jaramillo A, Nores M, Pacheco JF, Robbins MB, Schulenberg TS, Stiles FG, Stotz DF, Zimmer KJ (2009) A classification of the bird species of South America. In: American Ornithologists' Union. https://www.museum.lsu.edu/~Remsen/SACCBaseline. Accessed 18 Mar 2018

  • Riegert J, Fainová D, Antczak M, Sedláček O, Hořák D, Reif J, Pešata M (2011) Food niche differentiation in two syntopic sunbird species: a case study from the Cameroon Mountains. Journal of Ornithology 152:819–825

    Google Scholar 

  • Robbins CS (1981) Effect of time of day on bird activity. Studies in Avian Biology 6:275–286

    Google Scholar 

  • Robinson WD, Brawn JD, Robinson SK (2000) Forest bird community structure in Central Panama: influence of spatial scale and biogeography. Ecological Monographs 70:209–235

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional-scale precipitation patterns associated with the El Niño/southern oscillation. Monthly Weather Review 115:1606–1626

    Google Scholar 

  • Rotenberry JT (1985) The role of habitat in avian community composition: physiognomy or floristics? Oecologia 67:213–217

    PubMed  Google Scholar 

  • Rotenberry JT, Wiens JA (1980) Habitat structure, patchiness, and avian communities in north American steppe vegetation: a multivariate approach. Ecology 61:1228–1250

    Google Scholar 

  • Ruhí A, Datry T, Sabo JL (2017) Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems. Biological Conservation 31:1459–1468

    Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Biological Conservation 5:18–32

    Google Scholar 

  • Scherer JFM, Scherer AL, Petry MV (2010) Estrutura trófica e ocupação de habitat da avifauna de um parque urbano em Porto Alegre, Rio Grande do Sul, Brasil. Biotemas 23:169–180

    Google Scholar 

  • Shoo LP, Williams SE, Hero JM (2005) Climate warming and the rainforest birds of the Australian wet tropics: using abundance data as a sensitive predictor of change in total population size. Biological Conservation 125:335–343

    Google Scholar 

  • Signor CA, Pinho JB (2011) Spatial diversity patterns of birds in a vegetation mosaic of the Pantanal, Mato Grosso, Brazil. Zoologia 28:725–738

    Google Scholar 

  • Sigrist T (2009) Guia de Campo Avis Brasilis – Avifauna Brasileira. Avis Brasilis, São Paulo

    Google Scholar 

  • Silva MP, Mauro RA, Mourão G, Coutinho ME (2000) Distribuição e quantificação de classes de vegetação do Pantanal através de levantamento aéreo. Revista Brasileira de Botânica 23:143–152

    Google Scholar 

  • Silva WR (1992) As aves da Serra do Japi. In: Morellato LPC (ed) História Natural da Serra do Japi: ecologia e preservação de uma área florestal no sudeste do Brasil. Editora da Unicamp, Campinas, pp 238–263

    Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Terborgh J (1986) Community aspects of frugivory in tropical forests. In: Estrada A, Fleming TH (eds) Frugivores and seed dispersal. W Junk Publishers, Dordrecht, pp 371–384

    Google Scholar 

  • Terborgh J, Winter B (1983) A method for siting parks and reserves with special reference to Colombia and Ecuador. Biological Conservation 27:45–58

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielborger K, Wichmann M, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31:79–92

    Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrological Processes 14:2861–2883

    Google Scholar 

  • Trainor CR (2002) Status and habitat associations of birds on Lembata Island, Wallacea, Indonesia, with reference to a simple technique for avifaunal survey on small islands. Bird Conservation International 12:365–381

    Google Scholar 

  • Tubelis DP, Tomás WM (1999) Distribution of birds in a naturally patchy environment in the Pantanal wetland, Brazil. Ararajuba 7:81–89

    Google Scholar 

  • Tubelis DP, Tomás WM (2003) Bird species of the wetland, Brazil. Ararajuba 11:5–37

    Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Google Scholar 

  • Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87:2697–2708

    PubMed  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244

    CAS  PubMed  Google Scholar 

  • Van Langevelde F, Van de Vijver CADM, Kumar L, Van de Koppel J, De Ridder N, Van Andel J, Skidmore AK, Hearne JW, Stroosnijder L, Bond WJ, Prinss HHT, Rietkerk M (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84:337–350

    Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology 85:183–206

    PubMed  Google Scholar 

  • Willis EO (1979) The composition of avian communities in remanescent woodlots in southern Brazil. Papeis Avulsos de Zoologia 33:1–25

    Google Scholar 

  • Wilman H, Belmaker J, Simpson J, De La Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95:2027–2027

    Google Scholar 

  • Yabe RS, Marini MA, Marques EJ (2010) Movements of birds among natural vegetation patches in the Pantanal, Brazil. Bird Conservation International 20:400–409

    Google Scholar 

  • Zhou SR, Zhang DY (2008) A nearly neutral model of biodiversity. Ecology 89:248–258

    PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the financial support from the following institutions: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES); Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas (INAU/UFMT/CNPq/INCT); Centro de Pesquisa do Pantanal (CPP); and the Brehm Funds for International Bird Conservation (BF), Germany. Furthermore, we thank the SESC Pantanal administration for permission to conduct research on their property and for their logistical help with our fieldwork. The study is part of the biodiversity monitoring project: Sounds of the Pantanal, Computational Bioacoustics Research Unit (www.cobra.ic.ufmt.br, INAU/UFMT/CNPq/INCT), conducted under SISBIO permit no. 39095 (K.-L. Schuchmann).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Ferreira de Deus.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest with any data or information provided in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Deus, F.F., Schuchmann, KL., Arieira, J. et al. Avian Beta Diversity in a Neotropical Wetland: the Effects of Flooding and Vegetation Structure. Wetlands 40, 1513–1527 (2020). https://doi.org/10.1007/s13157-019-01240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01240-0

Keywords

Navigation