Skip to main content

Advertisement

Log in

Phylogeography and species distribution modeling reveal a historic disjunction for the conifer Podocarpus lambertii

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Phylogeography and species distribution models (SDMs) were integrated to test the hypothesis that the current disjunct distribution of Podocarpus lambertii, a cold-tolerant species, preserves the signature of Quaternary climatic oscillations, revealing historical barriers to gene flow. Twenty-five populations (286 individuals) of P. lambertii were screened for sequence variation at three intergenic cpDNA loci. We characterized the genetic diversity, constructed a haplotype network, identified population groups based on genetic divergence among populations and putative refugial areas, and tested the association between genetic and geographic distances. For SDMs, we used an ensemble approach based on five algorithms to estimate climatically suitable areas for the species during the Last Glacial Maximum (LGM), Holocene (HOL), and the present-day (PD). For all populations, haplotype and nucleotide diversity were 0.676 and 4.8 × 10−4, respectively. Neutrality tests indicated a recent expansion for the species. Analysis of molecular variance revealed genetic divergence among populations (FST = 0.1385), significantly correlated with geographic distances (r = 0.524, p < 0.01). Bayesian analysis suggested the formation of a Southern Group (SG) and Northern Group (NG), separated by a barrier to gene flow, with high differentiation among groups (FCT = 0.6458). The SDMs showed temporal changes in an area suitable for P. lambertii, mainly present at high altitudes and cold temperatures. The main occurrence area of P. lambertii now resides in SG, owing to a colder climate when compared with NG and the expansion of Araucaria angustifolia, a nurse plant that may have created better microclimatic conditions for P. lambertii expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ab’Sáber AN (1977) Os domínios morfoclimáticos na América do Sul. Geomorfologia 52(1):1–22

    Google Scholar 

  • Ab’Sáber AN (2003) Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Editorial, v.1, São Paulo

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232

    Google Scholar 

  • Alvarado-Serrano DF, Knowles LL (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour 14(2):233–248

    PubMed  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22(1):42–47

    PubMed  Google Scholar 

  • Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36(1):3–15

    Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Barros MJ, Silva-Arias GA, Fregonezi JN, Turchetto-Zolet AC, Iganci JR, JAF D-F, Freitas LB (2015) Environmental drivers of diversity in Subtropical Highland Grasslands. Perspect Plant Ecol 17(5):360–368

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43(3):413–423

    Google Scholar 

  • Beatty GE, Provan JIM (2010) Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant Orthilia secunda. Mol Ecol 19(22):5009–5021

    PubMed  Google Scholar 

  • Beheragaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology 17(17):3754–3774

  • Behling H (1996) First report on new evidence for the occurrence of Podocarpus and possible human presence at the mouth of the Amazon during the Late-glacial. Veg Hist Archaeobotany 5(3):241–246

    Google Scholar 

  • Behling H (1997) Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South Brazil). Rev Palaeobot Palynol 97(1–2):109–121

    Google Scholar 

  • Behling H, Bauermann SG, Neves PCP (2001) Holocene environmental changes in the São Francisco de Paula region, southern Brazil. J S Am Earth Sci 14(6):631–639

    Google Scholar 

  • Behling H, Pillar VD, Müller SC, Overbeck GE (2007) Late–Holocene fire history in a forest-grassland mosaic in southern Brazil: implications for conservation. Appl Veg Sci 10(1):81–90

    Google Scholar 

  • Behling H, Pillar VD, Orlóci L, Bauermann SG (2004) Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high–resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 203(3–4):277–297

    Google Scholar 

  • Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quat Sci Rev 27(27–28):2449–2455

    Google Scholar 

  • Bernardi AP (2015) Estrutura genética e demográfica de Podocarpus lambertii Klotzch ex Endl. em uma paisagem de campo. Disseration, Federal University of Santa Catarina, 128 p

  • Bernardi AP, Lauterjung MB, Montagna T, Candido-Ribeiro R, Hoeltgebaum MP, Mantovani A, dos Reis MS (2019) Population dynamics of Podocarpus lambertii in southern Brazilian forest–grassland mosaics. Can J For Res 49:884–891

    Google Scholar 

  • Birky CW (2008) Uniparental inheritance of organelle genes. Curr Biol 18(16):692–695

  • Brunes TO, Thomé MTC, Alexandrino J, Haddad CF, Sequeira F (2015) Ancient divergence and recent population expansion in a leaf frog endemic to the southern Brazilian Atlantic forest. Org Divers Evol 15(4):695–710

    Google Scholar 

  • Cárdenas ML, Gosling WD, Sherlock SC, Poole I, Pennington RT, Mothes P (2011) The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change. Science 331(6020):1055–1058

    PubMed  Google Scholar 

  • Cardim RH (2012) Dendrocronologia e anatomia funcional do xilema ativo de Podocarpus lambertii Klotzch ex Endl., Dissertation, University of São Paulo, 82 p

  • Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323(5915):785–789

    CAS  PubMed  Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2(6):667–680

    Google Scholar 

  • Cernusak LA, Adie H, Bellingham PJ, Biffin E, Brodribb TJ, Coomes DA, Dallig JW, Dickie IA, Enright NJ, Kitayama K, Ladd FG, Lambers H, Lawes MJ, Lusk CH, Morley RJ, Turner BL (2011) Podocarpaceae in tropical forests: a synthesis. Smithson Contrib Bot 95:189–202

    Google Scholar 

  • Collevatti RG, Terribile LC, Diniz-Filho JA, Lima-Ribeiro MS (2015) Multi–model inference in comparative phylogeography: an integrative approach based on multiple lines of evidence. Front Genet 6:31

    PubMed  PubMed Central  Google Scholar 

  • Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, de Oliveira G, Rangel TF, Diniz-Filho JA (2012) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol 21(23):5845–5863

    PubMed  Google Scholar 

  • CONSEMA (2014) Official list of threatened species of extinction in the state of Santa Catarina. State Council for the Environment of Santa Catarina. Available from: <http://www.sds.sc.gov.br/index.php/biblioteca/consema/legislacao/resolucoes/325-resolucao-consema-no-512014-1/file. Accessed 08 December 2018

  • Corander J, Sirén J, Arjas E (2008) Bayesian spatial modeling of genetic population structure. Comput Stat 23:111–129

    Google Scholar 

  • De Oliveira PE, AMF B, Suguio K (1999) Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152(3–4):319–337

    Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non–coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–134

    CAS  PubMed  Google Scholar 

  • Diniz-Filho JAF, Mauricio Bini L, Fernando RT, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32(6):897–906

    Google Scholar 

  • Diniz-Filho JAF, de Telles MPC, Bonatto SL, Eizirik E, de Freitas TRO, Marco de Jr P, Santos FR, Sole-Cava A, Soares TN (2008) Mapping the evolutionary twilight zone: molecular markers, populations and geography. J Biogeogr 35:753–763

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duarte LDS, Dos-Santos MM, Hartz SM, Pillar VD (2006) Role of nurse plants in Araucaria Forest expansion over grassland in south Brazil. Austral Ecol 31(4):520–528

  • Enright NJ, Hill RS (1995) Ecology of the Southern Conifers. Melbourne University Press, Carlton

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160, 115(1–2):–130

  • Farjon A (2013) Podocarpus lambertii. The IUCN Red List of Threatened Species 2013: e.T34086A2844519. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34086A2844519.en. Accessed 08 August 2018

  • Farjon A, Filer D (2013) An Atlas of the World’s Conifers: an analysis of their distribution, biogeography, diversity, and conservation status. Brill, Hardback, p 512

    Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia LC, Nogueira AC, Alquini Y (2006) Aspectos morfoanatômicos de sementes de Podocarpus lambertii Klotz. e Podocarpus sellowii Klotz., Podocarpaceae. J Seed Sci 28(3):129–134

  • Gorsuch R (1983) Factor analysis. Lawrence Erlebaum Associates

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B: Biol Sci 359(1442):183–195

  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after. Mol Phylogenet Evol 54(1):291–301

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2015) dismo: species distribution modeling. R package version 1.0–12. The R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Iriarte J, Behling H (2007) The expansion of Araucaria forest in the southern Brazilian highlands during the last 4000 years and its implications for the development of the Taquara/Itararé Tradition. Environ Archaeol 12(2):115–127

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14(6):885–890

    Google Scholar 

  • Kaiser HF (1970) A second generation little jiffy. Psychometrika 35(4):401–415

    Google Scholar 

  • Kaiser HF, Rice J (1974) Little Jiffy, Mark IV. Educ Psychol Meas 34(1):111–117

    Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab - an S4 package for kernel methods in R. J Stat Softw 11(9):1–20

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    CAS  PubMed  Google Scholar 

  • Knowles LL (2009) Statistical phylogeography. Annu Rev Ecol Evol Syst 40:593–612

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuniyoshi YO (1983). Morfologia da semente e da germinação de 25 espécies arbóreas de uma floresta com araucária. Dissertation, Federal University of Paraná, 233p

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19(19):4179–4191

    CAS  PubMed  Google Scholar 

  • Lauterjung MB, Montagna T, Bernardi AP, Silva JZ, Costa NCF, Steiner F, Mantovani A, dos Reis MS (2019) Temporal changes in population genetics of six threatened Brazilian plant species in a fragmented landscape. For Ecol Manag 435:144–150

    Google Scholar 

  • Lauterjung MB, Bernardi AP, Montagna T, Candido–Ribeiro R, Costa NCF, Mantovani A, dos Reis MS (2018) Phylogeography of Brazilian pine (Araucaria angustifolia): integrative evidence for pre–Columbian anthropogenic dispersal. Tree Genet Genomes, 14(3), 36

  • Ledru MP, Salatino MLF, Ceccantini G, Salatino A, Pinheiro F, Pintaud JC (2007) Regional assessment of the impact of climatic change on the distribution of a tropical conifer in the lowlands of South America. Divers Distrib 13(6):761–771

    Google Scholar 

  • Leigh JW, Bryant D (2015) PopArt: full–feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116

    Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere–scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci 109(40):16217–16221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v 5.10.1: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451

    CAS  PubMed  Google Scholar 

  • Loera I, Ickert-Bond SM, Sosa V (2017) Pleistocene refugia in the Chihuahuan Desert: the phylogeographic and demographic history of the gymnosperm Ephedra compacta. J Biogeogr 44(12):2706–2716

    Google Scholar 

  • Longhi SJ, Brena DA, Ribeiro SB, Gracioli CR, Longhi RV, Mastella T (2010) Fatores ecológicos determinantes na ocorrência de Araucaria angustifolia e Podocarpus lambertii, na Floresta Ombrófila Mista da FLONA de São Francisco de Paula, RS, Brasil. Ciênc Rural 40(1)

  • Manieri C, Pires JM (1973) O gênero Podocarpus no Brasil. Silvicultura, São Paulo, v.8, p.1–24

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Milani EJ, Schneider PR, da Cunha TA (2013) Crescimento em diâmetro de árvores de Podocarpus lambertii em duas regiões fitogeográficas no Estado do Rio Grande do Sul, Brasil. Ci Fl 23(2):443–448

  • MMA Ministério do Meio Ambiente (2018) 2ª Atualização das Áreas Prioritárias para Conservação da Biodiversidade 2018. Secretaria de Biodiversidade, Departamento de Conservação de Ecossistemas. Brasília: MMA. http://areasprioritarias.mma.gov.br/2-atualizacao-das-areas-prioritarias

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83(3):383–404

    Google Scholar 

  • Montagna T, Gasper AL de, Oliveira LZ, Lingner DV, Aguiar MD, Schorn LA, Bernardi AP, Mattos AG, Steiner F, Silva JZ, Hoeltgebaum MP, Lauterjung MB, Costa NCF, Candido-Ribeiro R, Mantovani A, Reis MS, Vibrans AC (2018) Situação atual e recomendações para conservação de 13 espécies de alto valor para uso e conservação no estado de Santa Catarina. In: Gasper AL de, Oliveira LZ, Lingner DV, Vibrans AC (eds) Inventário Florístico Florestal de Santa Catarina, Espécies arbóreas raras de Santa Catarina, Vol. VII, Edifurb, Blumenau, pp 159–241

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nix H (1986) A biogeographic analysis of Australian Elapid snakes. In: Longmore R (ed) Snakes: Atlas of Elapid Snakes of Australia. Bureau of Flora and Fauna, Canberra, pp 4–10

    Google Scholar 

  • Parolin M, Medeanic S, Stevaux JC (2006) Registros palinológicos e mudanças ambientais durante o Holoceno de Taquarussu (MS). Rev Bras Paleontol 9(1):137–148

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Mohanty A (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300(5625):1563–1565

    CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Google Scholar 

  • Pillar VDP, Lange O (2015) Os campos do sul. Porto Alegre/RS: Rede Campos Sulinos-UFRGS

  • Prado D (2003) As caatingas da América do Sul. In: Leal IR, Tabarelli M, JMC S (eds) Ecologia e conservação da Caatinga. Editora Universitária, Universidade Federal de Pernambuco, Recife

    Google Scholar 

  • Queiroz LP, Cardoso D, Fernandes MF, Moro MF (2017) Diversity and evolution of flowering plants of the Caatinga Domain. In Caatinga. (23–63 p) Springer, Cham

  • Quiroga MP, Premoli AC (2010) Genetic structure of Podocarpus nubigena (Podocarpaceae) provides evidence of Quaternary and ancient historical events. Palaeogeogr Palaeoclimatol Palaeoecol 285(3–4):186–193

    Google Scholar 

  • Quiroga MP, Pacheco S, Malizia LR, Premoli AC (2012) Shrinking forests under warming: evidence of Podocarpus parlatorei (pino del cerro) from the subtropical Andes. J Hered 103(5):682–691

    PubMed  Google Scholar 

  • R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org

  • Reis MS, Mantovani A, Silva JZ, Mariot A, Bittencourt R, Nazareno AG, Ferreira DK, Steiner F, Montagna T, Silva FALS, Fernandes CD, Altrak G, Figueredo GU (2012) Distribuição da diversidade genética e conservação de espécies arbóreas em remanescentes florestais de Santa Catarina. In: Vibrans AC, Sevegnani L, de Gasper AL, Lingner DV (eds) Inventário Florístico Florestal de Santa Catarina, Diversidade e conservação dos remanescentes florestais, vol I. Blumenau, Edifurb

    Google Scholar 

  • Revelle W (2018) Psych: procedures for personality and psychological research. Northwestern University, Evanston https://CRAN.R-project.org/package=psych Version 1.8.12

    Google Scholar 

  • Richards CL, Carstens BC, Knowles L (2007) Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. J Biogeogr 34(11):1833–1845

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobral-Souza T, Lima-Ribeiro MS, Solferini VN (2015) Biogeography of Neotropical rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol Ecol 29(5):643–655

    Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15(14):4261–4293

    PubMed  Google Scholar 

  • Souza VC (2013) Podocarpaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2009) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Biol Sci 277(1682):661–671

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tax DM, Duin RP (2004) Support vector data description. Mach Learn 54(1):45–66

    Google Scholar 

  • Vibrans AC, McRoberts RE, Ligner DV, Nicoletii AL, Moser P (2012) Extensão original e atual da cobertura florestal de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (eds) Inventário Florístico Florestal de Santa Catarina – Diversidade e Conservação dos Remanescentes Florestais. Editora FURB, Blumenau

    Google Scholar 

  • Vieira L do N, Faoro H, Rogalski M, de Freitas Fraga HP, RLA C, de Souza EM, Guerra MP (2014) The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. PLoS One 9(3):e90618

  • Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2(7):e563

    PubMed  PubMed Central  Google Scholar 

  • Wang XQ, Ran JH (2014) Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 75:24–40

  • Weir BS, Cockerham CC (1984) Estimating F–Statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Zizka A, Silvestro D, Andermann T, Azevedo J, Duarte Ritter C, Edler D, Farooq H, Herdean A, Ariza M, Scharn R, Svanteson S, Wengstrom N, Zizka V, Antonelli A (2019) CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol Evol 10:744. https://doi.org/10.1111/2041-210X.13152

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Federal University of Santa Catarina (UFSC), Santa Catarina State University (UDESC), Tropical Forest Research Group (NPFT), Conservation and Use of Natural Resources (UCRN), Laboratory of Plant Physiology and Developmental Physiology (LFDGV), Chico Mendes Biodiversity Institute (ICMBio), Conservation Units Division (DUC), and landowners that authorized and facilitated the sample collection. We also thank David Martin for the English review and the anonymous reviewers for their invaluable suggestions and comments.

Data archiving statement

Individual haplotype sequences found in this study for each intergenic region have been submitted to the GenBank databases under submission MK648496 – MK648786 (trnS–trnfM), MK648787 – MK649082 (trnH–psbA), and MK649083 – MK649378 (atpE–rbcL).

Funding

This work was financially supported by the National Council of Technological and Scientific Development (FAPESC/2780/2012–4 and 305980/2018–1 to M.S.R.) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the doctoral scholarship to A.P.B and M.B.L.

Author information

Authors and Affiliations

Authors

Contributions

This research represents part of a doctoral thesis of APB. MSR, AM, and APB designed the research; APB and MBL collected the samples and performed the laboratory procedures; APB and MBL performed the analysis; APB wrote the draft of the manuscript; all authors reviewed and contributed to the manuscript.

Corresponding author

Correspondence to Alison Paulo Bernardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Gugerli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by F. Gugerli

Electronic supplementary material

ESM 1

(PDF 1114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, A.P., Lauterjung, M.B., Mantovani, A. et al. Phylogeography and species distribution modeling reveal a historic disjunction for the conifer Podocarpus lambertii. Tree Genetics & Genomes 16, 40 (2020). https://doi.org/10.1007/s11295-020-01434-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01434-2

Keywords

Navigation