Skip to main content
Log in

Oceanic response to Hurricane Irma (2017) in the Exclusive Economic Zone of Cuba and the eastern Gulf of Mexico

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An understanding of the oceanic response to tropical cyclones is of importance for studies on climate change, ecological variability and environmental protection. Hurricane Irma (2017, Atlantic Ocean) broke many records, including the fact that it was the first category 5 hurricane making landfall in Cuba since 1924. In this study, we assess the oceanic response of the waters of the Cuban Exclusive Economic Zone (EEZ) and the eastern Gulf of Mexico (GoM) to the passage of this hurricane. Overall, Irma led to a weak sea surface cooling in the EEZ, which was associated with the thermal structure of its waters and the fact that it was affected by the left-side quadrants of this hurricane. This cooling was driven by mixing and upwelling processes. In contrast, the chlorophyll-a (chl-a) concentration increase was comparable with climatological records, suggesting that horizontal advection of coastal waters and entrainment of chl-a rich waters from remote regions of the GoM influenced the post-storm chl-a concentration. Moreover, Irma increased the chl-a concentration in the northeastern GoM and stimulated the offshore transport of these chl-a-rich waters to the interior GoM. A high chl-a plume (HCP) extended southward across the eastern GoM during the first post-storm week of Irma, and these waters reached the northwestern Cuban coast following the Loop Current. An intensification of the geostrophic currents of an anticyclonic eddy at the upper front of the Loop Current, the formation of an anticyclonic-cyclonic eddy pair in the northeastern GoM and wind-driven advection governed the extension of this HCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acker J, Lyon P, Hoge F, Shen S, Roffer M, Gawlikowski G (2009) Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration. IEEE Geosci Remote Sens Lett 6(2):209–213

    Google Scholar 

  • Androulidakis YS, Kourafalou VH (2013) On the processes that influence the transport and fate of Mississippi waters under flooding outflow conditions. Ocean Dyn 63:143–164

    Google Scholar 

  • Anglès S, Jordi A, Campbell L (2015) Responses of the coastal phytoplankton community to tropical cyclones revealed by high-frequency imaging flow cytometry. Limnol Oceanogr 60(5):1562–1576

    Google Scholar 

  • Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92(2):157–174

    Google Scholar 

  • Avila-Alonso D, Baetens JM, Cardenas R, De Baets B (2019) The impact of hurricanes on the oceanographic conditions in the Exclusive Economic Zone of Cuba. Remote Sens Environ 233:111339. https://doi.org/10.1016/j.rse.2019.111339

  • Babin SM, Carton JA, Dickey TD, Wiggert JD (2004) Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J Geophys Res Oceans 109(C03043). https://doi.org/10.1029/2003JC001938

  • Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res Atmos 98(D12):23245–23263

    Google Scholar 

  • Boss E, Zaneveld JRV (2003) The effect of bottom substrate on inherent optical properties: evidence of biogeochemical processes. Limnol Oceanogr 48(1, part2):346–354

    Google Scholar 

  • Briones-Fourzán P, Candela J, Lozano-Álvarez E (2008) Postlarval settlement of the spiny lobster Panulirus argus along the Caribbean coast of Mexico: patterns, influence of physical factors, and possible sources of origin. Limnol Oceanogr 53(3):970–985

    Google Scholar 

  • Cerdeira-Estrada S, Muller-Karger F, Gallegos-Garcia A (2005) Variability of the sea surface temperatures around Cuba. Gulf Mexico Sci 23(2):161–171

    Google Scholar 

  • Chassignet E, Hurlburt O HEand Smedstad, Barron C, Ko D, Rhodes R, et al (2005) Assessment of data assimilative ocean models in the Gulf of Mexico using ocean color. In: Sturges W, Lugo-Fernandez A (eds) Circulation in the Gulf of Mexico: Observations and Models :87–100

  • Chiang TL, Wu CR, Oey LY (2011) Typhoon Kai-Tak: an ocean’s perfect storm. J Phys Oceanogr 41(1):221–233

    Google Scholar 

  • D’Asaro EA, Sanford TB, Niiler PP, Terrill EJ (2007) Cold wake of Hurricane Frances. Geophys Res Lett 34:(L15609). https://doi.org/10.1029/2007GL030160

  • da Silva CE, Castelao RM (2018) Mississippi River plume variability in the Gulf of Mexico from SMAP and MODIS-Aqua observations. J Geophys Res Oceans 123(9):6620–6638

    Google Scholar 

  • Dierssen HM, Zimmerman RC, Drake LA, Burdige D (2010) Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank. Mar Ecol Prog Ser 411:1–15

    Google Scholar 

  • Domingues R, Goni G, Bringas F, Lee SK, Kim HS, Halliwell G, Dong J, Morell J, Pomales L (2015) Upper ocean response to Hurricane Gonzalo (2014): salinity effects revealed by targeted and sustained underwater glider observations. Geophys Res Lett 42(17):7131–7138

    Google Scholar 

  • Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens Environ 116:140–158

  • Ezer T (2018) On the interaction between a hurricane, the Gulf Stream and coastal sea level. Ocean Dyn 68(10):1259–1272

    Google Scholar 

  • Ezer T, Atkinson LP, Tuleya R (2017) Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level. Dyn Atmos Oceans 80:124–138

    Google Scholar 

  • Farfán LM, D’Sa EJ, Kb L, Rivera-Monroy VH (2014) Tropical cyclone impacts on coastal regions: the case of the Yucatán and the Baja California Peninsulas, Mexico. Estuar Coasts 37(6):1388–1402

    Google Scholar 

  • Fischer G, Karakaş G (2009) Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean. Biogeosciences 6(1):85–102

    Google Scholar 

  • Foltz GR, Balaguru K, Leung LR (2015) A reassessment of the integrated impact of tropical cyclones on surface chlorophyll in the western subtropical North Atlantic. Geophys Res Lett 42(4):1158–1164

    Google Scholar 

  • Fu H, Wang X, Chu PC, Zhang X, Han G, Li W (2014) Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific. J Geophys Res Oceans 119(11):8078–8092

    Google Scholar 

  • Fuentes Yaco C, Holguín EV, Devred T, Platt T, Sathyendranath S, Halfar J, Orta LG, Borges J (2007) Teledetección del impacto del Huracán Ignacio (2003) en el Pacífico tropical oriental. In: Hernández de la Torre B, Gaxiola Castro G (eds) Carbono en ecosistemas acuáticos de México. SEMARNAT, INE, CICESE, México, pp 279–292

  • Gierach MM, Subrahmanyam B (2008) Biophysical responses of the upper ocean to major Gulf of Mexico hurricanes in 2005. J Geophys Res Oceans 113(C04029). https://doi.org/10.1029/2007JC004419

  • Gilbes F, Armstrong RA (2004) Phytoplankton dynamics in the eastern Caribbean Sea as detected with space remote sensing. Int J Remote Sens 25(7–8):1449–1453

    Google Scholar 

  • Gilbes F, Armstrong RA, Webb RM, Müller-Krager FE (2001) SeaWiFS helps assess hurricane impact on phytoplankton in Caribbean Sea. EOS Trans Am Geophys Union 82(45):529–533

    Google Scholar 

  • Girishkumar M, Suprit K, Chiranjivi J, Bhaskar TU, Ravichandran M, Shesu RV, Rao EPR (2014) Observed oceanic response to Tropical cyclone Jal from a moored buoy in the south-western Bay of Bengal. Ocean Dyn 64(3):325–335

  • Gohin F (2011) Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci 7(5):705–732

    Google Scholar 

  • Gohin F, Druon J, Lampert L (2002) A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int J Remote Sens 23(8):1639–1661

    Google Scholar 

  • Gonella J (1971) A local study of inertial oscillations in the upper layers of the ocean. Deep-Sea Res Oceanogr Abstr 18(8): 775–788. https://doi.org/10.1016/0011-7471(71)90045-3

  • González NM, Müller-Karger FE, Estrada SC, Pérez de los Reyes R, Río IV, Pérez PC, Arenal IM (2000) Near-surface phytoplankton distribution in the western Intra-Americas Sea: the influence of El Niño and weather events. J Geophys Res Oceans 105(C6):14029–14043

    Google Scholar 

  • Govoni JJ, Hoss DE, Colby DR (1989) The spatial distribution of larval fishes about the Mississippi River plume. Limnol Oceanogr 34(1):178–187

    Google Scholar 

  • Grimes CB, Finucane JH (1991) Spatial distribution and abundance of larval and juvenile fish, chlorophyll and macrozooplankton around the Mississippi River discharge plume, and the role of the plume in fish recruitment. Mar Ecol Prog Ser 75(2):109–119

    Google Scholar 

  • Hanshaw MN, Lozier MS, Palter JB (2008) Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic. Geophys Res Lett 35(L01601). https://doi.org/10.1029/2007GL031862

  • Hochman HT, Müller-Karger F, Walsh JJ (1994) Interpretation of the coastal zone color scanner signature of the Orinoco River plume. J Geophys Res Oceans 99(C4):7443–7455

    Google Scholar 

  • Hu C, Nelson JR, Johns E, Chen Z, Weisberg RH, Müller-Karger FE (2005) Mississippi River water in the Florida Strait and in the Gulf Stream off Georgia in summer 2004. Geophys Res Lett 32(L14606). https://doi.org/10.1029/2005GL022942

  • Jaimes B, Shay LK (2009) Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon Weather Rev 137(12):4188–4207

    Google Scholar 

  • Jaimes B, Shay LK (2015) Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): observations and theory. J Phys Oceanogr 45(6):1667–1689

    Google Scholar 

  • Jones EB, Wiggert JD (2015) Characterization of a high chlorophyll plume in the northeastern Gulf of Mexico. Remote Sens Environ 159:152–166

    Google Scholar 

  • Jullien S, Menkès CE, Marchesiello P, Jourdain NC, Lengaigne M, Koch-Larrouy A, Lefèvre J, Vincent E, Faure V (2012) Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J Phys Oceanogr 42(11):1882–1906

    Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull Am Meteorol Soc 91(3):363–376

    Google Scholar 

  • Kough AS, Paris CB, Butler MJ IV (2013) Larval connectivity and the international management of fisheries. PLoS One 8(6):e64970. https://doi.org/10.1371/journal.pone.0064970

    Article  Google Scholar 

  • Le Hénaff M, Kourafalou VH (2016) Mississippi waters reaching South Florida reefs under no flood conditions: synthesis of observing and modeling system findings. Ocean Dyn 66(3):435–459

    Google Scholar 

  • Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2(3):218–224

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Profess Pap 13:1–173

    Google Scholar 

  • Liu SS, Sun L, Wu Q, Yang YJ (2017) The responses of cyclonic and anticyclonic eddies to typhoon forcing: the vertical temperature-salinity structure changes associated with the horizontal convergence/divergence. J Geophys Res Oceans 122(6):4974–4989

    Google Scholar 

  • Lloyd ID, Vecchi GA (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24(4):1138–1153

    Google Scholar 

  • Loisel H, Vantrepotte V, Ouillon S, Ngoc DD, Herrmann M, Tran V, Mériaux X, Dessailly D, Jamet C, Duhaut T et al (2017) Assessment and analysis of the chlorophyll-a concentration variability over the Vietnamese coastal waters from the MERIS Ocean color sensor (2002–2012). Remote Sens Environ 190:217–232

    Google Scholar 

  • Lonfat M, Marks FD Jr, Chen SS (2004) Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: a global perspective. Mon Weather Rev 132(7):1645–1660

    Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288–1619

  • Mallin MA, Paerl HW, Rudek J, Bates PW (1993) Regulation of estuarine primary production by watershed rainfall and river flow. Mar Ecol Prog Ser 93:199–199

    Google Scholar 

  • Maritorena S, d’Andon OHF, Mangin A, Siegel DA (2010) Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 114(8):1791–1804

    Google Scholar 

  • Martínez-López B, Zavala-Hidalgo J (2009) Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. J Mar Syst 77(1–2):1–20

    Google Scholar 

  • Mason OU, Canter EJ, Gillies LE, Paisie TK, Roberts BJ (2016) Mississippi River plume enriches microbial diversity in the northern Gulf of Mexico. Front Microbiol 7(1048). https://doi.org/10.3389/fmicb.2016.01048

  • Matsuoka A, Hill V, Huot Y, Babin M, Bricaud A (2011) Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications. J Geophys Res Oceans 116:(C02007). https://doi.org/10.1029/2009JC005594

  • Matsuoka A, Bricaud A, Benner R, Para J, Sempéré R, Prieur L, Bélanger S, Babin M (2012) Tracing the transport of colored dissolved organic matter in water masses of the southern Beaufort Sea: relationship with hydrographic characteristics. Biogeosciences 9:925–940

  • Matsuoka A, Hooker B, Bricaud A, Gentili B, Babin M (2013) Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space. Biogeosciences 10(2):917–927

    Google Scholar 

  • Matsushita B, Yang W, Chang P, Yang F, Fukushima T (2012) A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements. ISPRS J Photogramm Remote Sens 69:74–87

    Google Scholar 

  • Meaden GJ, Aguilar-Manjarrez J, Corner RA, O’Hagan AM, Cardia F (2016) Marine spatial planning for enhanced fisheries and aquaculture sustainability: its application in the Near East. FAO Fisheries and Aquaculture Technical Paper No. 604, Rome, p 89

  • Mélin F, Vantrepotte V (2015) How optically diverse is the coastal ocean? Remote Sens Environ 160:235–251

    Google Scholar 

  • Menkes CE, Lengaigne M, Lévy M, Éthé C, Bopp L, Aumont O, Vincent E, Vialard J, Jullien S (2016) Global impact of tropical cyclones on primary production. Glob Biogeochem Cycles 30(5):767–786

    Google Scholar 

  • Meyers PC, Shay LK, Brewster JK (2014) Development and analysis of the systematically merged atlantic regional temperature and salinity climatology for oceanic heat content estimates. J Atmos Ocean Technol 31(1):131–149

  • Meyers PC, Shay LK, Brewster JK, Jaimes B (2016) Observed ocean thermal response to Hurricanes Gustav and Ike. J Geophys Res Oceans 121(1):162–179

    Google Scholar 

  • Mitrani Arenal I (2001) Caracterización general de la capa activa oceánica en los mares cercanos a Cuba y su posible enlace con el desarrollo de los ciclones tropicales. Rev Investig Mar 22(2):81–91

  • Mitrani Arenal I, Rodríguez OD (2001) Estructura termosalina de la capa activa oceánica en los mares cercanos a Cuba y su influencia en la formación de los ciclones tropicales. Rev Cuba Meteorol 8(1):18–24

  • Morel A (1980) In-water and remote measurements of ocean color. Bound-Layer Meteorol 18(2):177–201

    Google Scholar 

  • Morey SL, Martin PJ, O’Brien JJ, Wallcraft AA, Zavala-Hidalgo J (2003a) Export pathways for river discharged fresh water in the northern Gulf of Mexico. J Geophys Res Oceans 108(C103303). https://doi.org/10.1029/2002JC001674

  • Morey SL, Schroeder WW, O’Brien JJ, Zavala-Hidalgo J (2003b) The annual cycle of riverine influence in the eastern Gulf of Mexico Basin. Geophys Res Lett 30(161867). https://doi.org/10.1029/2003GL017348

  • Muller-Karger FE, Smith JP, Werner S, Chen R, Roffer M, Liu Y, Muhling B, Lindo-Atichati D, Lamkin J, Cerdeira-Estrada S et al (2015) Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog Oceanogr 134:54–76

    Google Scholar 

  • Oey LY, Ezer T, Wang DP, Fan SJ, Yin XQ (2006) Loop current warming by Hurricane Wilma. Geophys Res Lett 33(L08613). https://doi.org/10.1029/2006GL025873

  • Oey LY, Ezer T, Wang DP, Yin XQ, Fan SJ (2007) Hurricane-induced motions and interaction with ocean currents. Cont Shelf Res 27:1249–1263

    Google Scholar 

  • Pérez-Santos I, Schneider W, Valle-Levinson A, Garcés-Vargas J, Soto I, Montoya-Sánchez R, González NM, Müller-Karger F (2014) Chlorophyll-a patterns and mixing processes in the Yucatan Basin, Caribbean Sea. Cien Mar 40(1):11–31

    Google Scholar 

  • Prakash KR, Nigam T, Pant V (2018) Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model. Ocean Sci 14(2):259–272

    Google Scholar 

  • Prescott-Allen R (2001) The well-being of nations: a country-by-country index of quality of life and the environment. Island Press, Washington, D.C., p 342

    Google Scholar 

  • Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11(2):153–175

    Google Scholar 

  • Price JF (1983) Internal wave wake of a moving storm. Part I. Scales, energy budget and observations. J Phys Oceanogr 13(6):949–965

    Google Scholar 

  • Price JF (2009) Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Sci 5(3):351–368

    Google Scholar 

  • Risser MD, Wehner MF (2017) Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys Res Lett 44:12457–12464

    Google Scholar 

  • Schiller R, Kourafalou V, Hogan P, Walker N (2011) The dynamics of the Mississippi River plume: impact of topography, wind and offshore forcing on the fate of plume waters. J Geophys Res Oceans 116(C06029). https://doi.org/10.1029/2010JC006883

  • Shay LK, Elsberry RL (1987) Near-inertial ocean current response to Hurricane Frederic. J Phys Oceanogr 17(8):1249–1269

    Google Scholar 

  • Shay LK, Black PG, Mariano AJ, Hawkins JD, Elsberry RL (1992) Upper ocean response to Hurricane Gilbert. J Geophys Res Oceans 97(C12):20227–20248

    Google Scholar 

  • Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128(5):1366–1383

    Google Scholar 

  • Shi W, Wang M (2007) Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico. Geophys Res Lett 34(L11607). https://doi.org/10.1029/2007GL029724

  • Shropshire T, Li Y, He R (2016) Storm impact on sea surface temperature and chlorophyll a in the Gulf of Mexico and Sargasso Sea based on daily cloud-free satellite data reconstructions. Geophys Res Lett 43(23):12199–12207

    Google Scholar 

  • Son S, Platt T, Fuentes-Yaco C, Bouman H, Devred E, Wu Y, Sathyendranath S (2007) Possible biogeochemical response to the passage of Hurricane Fabian observed by satellites. J Plankton Res 29(8):687–697

    Google Scholar 

  • Son YB, Gardner WD, Richardson MJ, Ishizaka J, Ryu JH, Kim SH, Lee SH (2012) Tracing offshore low-salinity plumes in the northeastern Gulf of Mexico during the summer season by use of multispectral remote-sensing data. J Oceanogr 68(5):743–760

  • Spencer RG, Aiken GR, Dornblaser MM, Butler KD, Holmes RM, Fiske G, Mann PJ, Stubbins A (2013) Chromophoric dissolved organic matter export from US rivers. Geophys Res Lett 40(8):1575–1579

    Google Scholar 

  • Stramma L, Cornillon P, Price JF (1986) Satellite observations of sea surface cooling by hurricanes. J Geophys Res Oceans 96(C4):5031–5035

    Google Scholar 

  • Sun L, Yang YJ, Xian T, Lu Zm FYF (2010) Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar Ecol Prog Ser 404:39–50

    Google Scholar 

  • Sun L, Yang YJ, Xian T, Wang Y, Fu YF (2012) Ocean responses to Typhoon Namtheun explored with Argo floats and multiplatform satellites. Atmosphere-Ocean 50(sup1):15–26

    Google Scholar 

  • Sun L, Li YX, Yang YJ, Wu Q, Chen XT, Li QY, Li YB, Xian T (2014) Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: a satellite data-based evaluation between 2000 and 2008. J Geophys Res Oceans 119(9):5585–5598

    Google Scholar 

  • Trenberth KE, Cheng L, Jacobs P, Zhang Y, Fasullo J (2018) Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future 6:730–744

    Google Scholar 

  • Vincent EM, Lengaigne M, Vialard J, Madec G, Jourdain NC, Masson S (2012) Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J Geophys Res Oceans 117(C05023). https://doi.org/10.1029/2011JC007705

  • Walker ND, Leben RR, Balasubramanian S (2005a) Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys Res Lett 32(L18610). https://doi.org/10.1029/2005GL023716

  • Walker ND, Wiseman WJ Jr, Rouse LJ Jr, Babin A (2005b) Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume. J Coast Res 21(6):1228–1244

    Google Scholar 

  • Wang G, Wu L, Johnson NC, Ling Z (2016) Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophys Res Lett 43(14):7632–7638

    Google Scholar 

  • Wei J, Liu X, Jiang G (2018) Parameterizing sea surface temperature cooling induced by tropical cyclones using a multivariate linear regression model. Acta Oceanol Sin 37(1):1–10

    Google Scholar 

  • Wu Q, Chen D (2012) Typhoon-induced variability of the oceanic surface mixed layer observed by Argo Floats in the western north Pacific Ocean. Atmosphere-Ocean 50(sup1):4–14

  • Zavala-Hidalgo J, Gallegos-García A, Martínez-López B, Morey SL, Brien JJ (2006) Seasonal upwelling on the western and southern shelves of the Gulf of Mexico. Ocean Dyn 56(3–4):333–338

    Google Scholar 

  • Zhang H, Chen D, Zhou L, Liu X, Ding T, Zhou B (2016) Upper ocean response to Typhoon Kalmaegi (2014) J Geophys Res Oceans 121(8):6520–6535

  • Zhang H, Liu X, Wu R, Liu F, Yu L, Shang X, Qi Y, Wang Y, Song X, Xie X et al (2019) Ocean response to successive Typhoons Sarika and Haima (2016) based on data acquired via multiple satellites and moored array. Remote Sens 11(20):2360. https://doi.org/10.3390/rs11202360

  • Zhu W, Yu Q, Tian YQ, Chen RF, Gardner GB (2011) Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. J Geophys Res Oceans 116(C0201). https://doi.org/10.1029/2010JC006523

Download references

Acknowledgements

We thank the Upper Ocean Dynamics Laboratory at the University of Miami Rosenstiel School of Marine and Atmospheric Sciences for kindly providing us the computed ocean mixed layer depth data.

Funding

This work was supported by the Special Research Fund (BOF) of Ghent University, Belgium, Grant Code 01W03715. For satellite products presented in this work, please contact the corresponding author at davila@uclv.cu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dailé Avila-Alonso.

Additional information

Responsible Editor: Christoph Voelker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila-Alonso, D., Baetens, J.M., Cardenas, R. et al. Oceanic response to Hurricane Irma (2017) in the Exclusive Economic Zone of Cuba and the eastern Gulf of Mexico. Ocean Dynamics 70, 603–619 (2020). https://doi.org/10.1007/s10236-020-01350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01350-y

Keywords

Navigation