Skip to main content

Advertisement

Log in

Low-frequency sea level variability and impact of recent sea ice decline on the sea level trend in the Arctic Ocean from a high-resolution simulation

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Arctic Ocean is undergoing significant changes, with rapid sea ice decline, unprecedented freshwater accumulation, and pronounced regional sea level rise. In this paper, we analyzed the sea level variation in the Arctic Ocean based on a global simulation with 4.5-km resolution in the Arctic Ocean using the multi-resolution Finite Element Sea Ice-Ocean Model (FESOM). The simulation reasonably reproduces both the main spatial features of the sea surface height (SSH) and its temporal evolution in the Arctic Ocean in comparison with tide gauge and satellite data. Using the model results, we investigated the low-frequency variability of the Arctic SSH. Both the first two dominant modes of the annual-mean SSH evolution in the Arctic Ocean present decadal variability and can be mainly attributed to the variability of the halosteric height, thus the freshwater content. The first mode can be explained by the Arctic Oscillation (AO). The AO-related atmospheric circulation drives the accumulation and release of freshwater in the Arctic deep basin and the consequent ocean mass change over the continental shelf, leading to the antiphase changes in SSH between the shelf seas and the deep basin. The second mode shows an antiphase oscillation between the two Arctic deep basins, the Amerasian and Eurasian Basins, which is driven by the Arctic dipole anomaly (DA). The DA-related wind anomaly causes a spatial redistribution of freshwater between the two basins, leading to the antiphase SSH changes. By using a dedicated sensitivity simulation in which the recent sea ice decline is eliminated, we find that the sea ice decline contributed considerably to the observed sea level rise in the Amerasian Basin in the recent decades. Although the sea ice decline did not change the mean SSH averaged over the Arctic Ocean, it significantly changed the spatial pattern of the SSH trend. Our finding indicates that both the wind regime and ongoing sea ice decline should be considered to better understand and predict the changes in regional sea level in the Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry. In: Jin S, Barzaghi R (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham

    Google Scholar 

  • Armitage T, Bacon S, Kwok R (2018) Arctic sea level and surface circulation response to the Arctic oscillation. Geophys Res Lett 45:6576–6584. https://doi.org/10.1029/2018GL078386

    Google Scholar 

  • Armitage T, Bacon S, Ridout A, Petty A, Wolbach S, Tsamados M (2017) Arctic Ocean surface geostrophic circulation 2003-2014. Cryosphere 11(4):1767–1780. https://doi.org/10.5194/tc-11-1767-2017

    Google Scholar 

  • Armitage T, Bacon S, Ridout A, Thomas S, Aksenov Y, Wingham D (2016) Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014. J Geophys Res Oceans 121:4303–4322. https://doi.org/10.1002/2015JC011579

    Google Scholar 

  • Bindoff N, Willebrand J, Artale V et al (2007) Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis. S. Solomon et al. Eds, Cambridge University Press, 386–432

  • Calafat F, Chambers D, Tsimplis M (2013) Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian seas: the role of atmospheric forcing. J Geophys Res Oceans 118:1287–1301. https://doi.org/10.1002/jgrc.20106

    Google Scholar 

  • Carret A, Johannessen J, Andersen O, Ablain M, Prandi P, Blazquez A et al (2017) Arctic sea level during the satellite altimetry era. Surv Geophys 38(1):251–275

    Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173

    Google Scholar 

  • Cheng Y, Andersen O, Knudsen P (2015) An improved 20-year arctic ocean altimetric sea level data record. Mar Geod 38:146–162

    Google Scholar 

  • Church J, Clark P, Cazenave A et al (2013) Sea level change. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 1137–1216

    Google Scholar 

  • Danilov S, Wang Q, Timmermann R, Iakovlev N, Sidorenko D, Kimmritz M, Jung T, Schröter J (2015) Finite-element sea ice model (FESIM), version 2. Geosci Model Dev 8:1747–1761

    Google Scholar 

  • Dmitrenko I, Kirillov S, Tremblay L (2008) The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: implication for climatic change. J Geophys Res 113:C03007. https://doi.org/10.1029/2007JC004304

    Google Scholar 

  • Fukumori I, Wang O, Llovel W, Fenty I, Forget G (2015) A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic seas. Prog Oceanogr 134:152–172

    Google Scholar 

  • Giles K, Laxon S, Ridout A, Wingham D, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat Geosci 5:194–197. https://doi.org/10.1038/ngeo1379

    Google Scholar 

  • Good S, Martin M, Rayner N (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118(12):6704–6716. https://doi.org/10.1002/2013JC009067

    Google Scholar 

  • Griffies S, Yin J, Durack P et al (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89

    Google Scholar 

  • Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. J Geophys Res 117:C06023. https://doi.org/10.1029/2011JC007706

    Google Scholar 

  • Holgate S, Matthews A, Woodworth P et al (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1

    Google Scholar 

  • Ikeda M (1990) Decadal oscillation of the air-ice-sea system in the northern hemisphere. Atmos Ocean 28:106–139

    Google Scholar 

  • Ikeda M, Wang J, Zhao JP (2001) Hypersensitive decadal oscillations in the Arctic/subarctic climate. Geophys Res Lett 28(7):1275–1278

    Google Scholar 

  • Jakobsson M, Macnab R, Mayer L et al (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35:L07602. https://doi.org/10.1029/2008GL033520

    Google Scholar 

  • Johannessen J, Raj R, Nilsen J et al (2014) Toward improved estimation of the dynamic topography and ocean circulation in the high latitude and Arctic Ocean: the importance of GOCE. Surv Geophys 35(3):1–19

    Google Scholar 

  • Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93(1):5–48. https://doi.org/10.2151/jmsj.2015-001

    Google Scholar 

  • Köhl A, Serra N (2014) Causes of decadal changes of the freshwater content in the Arctic Ocean. J Clim 27:3461–3475. https://doi.org/10.1175/JCLI-D-13-00.389.1

    Google Scholar 

  • Koldunov N, Serra N, Köhl A et al (2014) Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970–2009. J Geophys Res Oceans 119(12):8936–8954. https://doi.org/10.1002/2014JC010170

    Google Scholar 

  • Kwok R, Cunningham G, Wensnahan M et al (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res 114:C07005. https://doi.org/10.1029/2009JC005312

    Google Scholar 

  • Laxon S (1994) Sea ice altimeter processing scheme at the EODC. Int J Remote Sens 15:915–924. https://doi.org/10.1080/01431169408954124

    Google Scholar 

  • Laxon S, Giles K, Ridout A et al (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40(4):732–737. https://doi.org/10.1002/grl.50193

    Google Scholar 

  • Lei R, Heil P, Wang J, Zhang Z, Li Q, Li N (2016) Characterization of sea-ice kinematic in the Arctic outflow region using buoy data. Polar Res 35:22658

    Google Scholar 

  • Lei R, Leppäranta M, Wang J et al (2015) Changes in sea ice along the Arctic northeast passage since 1979: results from remote sensing data. Cold Reg Sci Technol 119:132–144

    Google Scholar 

  • Long Z, Perrie W, Tang CL, Dunlap E, Wang J (2012) Simulated interannual variations of freshwater content and sea surface height in the Beaufort Sea. J Clim 25(4):1079–1095. https://doi.org/10.1175/2011JCI14121.1

    Google Scholar 

  • Martin T, Steele M, Zhang J (2014) Seasonality and long term trend of Arctic Ocean surface stress in a model. J Geophys Res Oceans 119:1723–1738. https://doi.org/10.1002/2013JC009425

    Google Scholar 

  • McPhee M, Proshutinsky A, Morison J, Steele M, Alkire M (2009) Rapid change in freshwater content of the Arctic Ocean. Geophys Res Lett 36:L10602. https://doi.org/10.1029/2009GL037525

    Google Scholar 

  • Meyssignac B, Slangen A, Melet A et al (2017) Evaluating model simulations of twentieth-century sea-level rise. Part II: regional sea-level changes. J Clim 30(21):8565–8593

    Google Scholar 

  • Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Steele M (2012) Changing arctic ocean freshwater pathways. Nature 481(7379):66–70

    Google Scholar 

  • Müller F, Wekerle C, Dettmering D, Passaro M, Bosch W, Seitz F (2019) Dynamic ocean topography of the northern Nordic seas: a comparison between satellite altimetry and ocean modeling. Cryosphere 13:611–626

    Google Scholar 

  • Peacock N, Laxon S (2004) Sea surface height determination in the Arctic Ocean from ERS altimetry. J Geophys Res Oceans 109:C07001. https://doi.org/10.1029/2001JC001026

    Google Scholar 

  • Peltier W, Argus D, Drummond R (2015) Space geodesy constrains ice age terminal deglaciation: the global ice-6g_c (vm5a) model. J Geophys Res Solid Earth 120(1):450–487

    Google Scholar 

  • Polyakov I, Bhatt U, Walsh J, Abrahamsen E, Pnyushkov A, Wassmann P (2013) Recent oceanic changes in the Arctic in the context of long-term observations. Ecol Appl 23(8):1745–1764. https://doi.org/10.1890/11-0902.1

    Google Scholar 

  • Prandi P, Ablain M, Cazenave A, Picot N (2012a) Sea level variability in the Arctic Ocean observed by satellite altimetry. Ocean Sci Discuss 9(4):2375–2401. https://doi.org/10.5194/osd-9-2375-2012

    Google Scholar 

  • Prandi P, Ablain M, Cazenave A, Picot N (2012b) A new estimation of mean sea level in the Arctic Ocean from satellite altimetry. Mar Geod 35(sup1):61–81. https://doi.org/10.1080/01490419.2012.718222

    Google Scholar 

  • Proshutinsky A, Ashik I, Dvorkin E, Häkkinen S, Krishfield R, Peltier W (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res Oceans 109:C03042. https://doi.org/10.1029/2003JC002007

    Google Scholar 

  • Proshutinsky A, Ashik I, Häkkinen S et al (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res Oceans 112:C04S08. https://doi.org/10.1029/2006JC003916

    Google Scholar 

  • Proshutinsky A, Bourke R, Mclaughlin F (2002) The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales. Geophys Res Lett 29(23):2100

    Google Scholar 

  • Proshutinsky A, Dukhovskoy D, Timmermans ML, Krishfield R, Bamber JL (2015) Arctic circulation regimes. Phil Trans R Soc A 373:20140160. https://doi.org/10.1098/rsta.2014.0160

    Google Scholar 

  • Proshutinsky A, Johnson M (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514

    Google Scholar 

  • Proshutinsky A, Krishfield R, Timermans M et al (2009) Beaufort Gyre freshwater reservoir: state and variability from observations. J Geophys Res Oceans 114:C00A10. https://doi.org/10.1029/2008JC005104

    Google Scholar 

  • Proshutinsky A, Kowalik Z (2007) Preface to special section on Arctic Ocean model intercomparison project (AOMIP) studies and results. J Geophys Res 112:C04S01. https://doi.org/10.1029/2006JC004017

    Google Scholar 

  • Rabe B, Karcher M, Kauker F, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kikuchi T, Su J (2014) Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophys Res Lett 41(3):961–968. https://doi.org/10.1002/2013GL058121

    Google Scholar 

  • Regan H, Lique C, Armitage T (2019) The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations. J Geophys Res Oceans 124:844–862. https://doi.org/10.1029/2018JC014379

    Google Scholar 

  • Rose S, Andersen O, Passaro M, Ludwigsen C, Schwatke C (2019) Arctic Ocean sea level record from the complete radar altimetry era: 1991-2018. Remote Sens 11(14). https://doi.org/10.3390/rs11141672

    Google Scholar 

  • Serreze M, Barrett A, Stroeve J, Kindig D, Holland M (2009) The emergence of surface-based Arctic amplification. Cryosphere 3(1):11–19. https://doi.org/10.5194/tc-3-11-2009

    Google Scholar 

  • Slangen A, Meyssignac B, Agosta C et al (2017) Evaluating model simulations of twentieth-century sea level rise. Part I: global mean sea level change. J Clim 30(21):8539–8563

    Google Scholar 

  • Stammer D, Cazenave A, Ponte R, Tamisiea M (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46. https://doi.org/10.1146/annurev-marine-121211-172406

    Google Scholar 

  • Stroeve J, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier W (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39(16). https://doi.org/10.1029/2012GL052676

    Google Scholar 

  • Svendsen P, Andersen O, Nielsen A (2016) Stable reconstruction of Arctic sea level for the 1950–2010 period. J Geophys Res Oceans 121(8):5697–5710. https://doi.org/10.1002/2016JC011685

    Google Scholar 

  • Thompson D, Wallace J (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300. https://doi.org/10.1029/98GL00950

    Google Scholar 

  • Volkov D, Landerer F (2013) Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J Geophys Res 118:6451–6460. https://doi.org/10.1002/2013JC009341

    Google Scholar 

  • Wang J, Ikeda M (2000) Arctic Oscillation and Arctic Sea-Ice Oscillation. Geophys Res Lett 27(9):1287–1290

    Google Scholar 

  • Wang J, Ikeda M (2001) Arctic Sea-Ice Oscillation: regional and seasonal perspectives. Ann Glaciol 33:481–492

    Google Scholar 

  • Wang J, Ikeda M, Zhang S, Gerdes R (2005) Linking the northern hemisphere sea-ice reduction trend and the quasi-decadal arctic sea-ice oscillation. Clim Dyn 24(2–3):115–130. https://doi.org/10.1007/s00382-004-0454-5

    Google Scholar 

  • Wang J, Zhang J, Watanabe E, Mizobata K, Ikeda M et al (2009) Is the dipole anomaly a major driver to record lows in the Arctic sea ice extent? Geophys Res Lett 36:L05706. https://doi.org/10.1029/2008GL036706

    Google Scholar 

  • Wang Q, Danilov S, Sidorenko D, Timmermann R, Wekerle C, Wang X, Jung T, Schroeter J (2014) The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci Model Dev 7:663–693

    Google Scholar 

  • Wang Q, Ilicak M, Gerdes R, Drange H, Aksenov Y, Bailey DA, Bentsen M, Biastoch A, Bozec A, Böning C, Cassou C, Chassignet E, Coward AC, Curry B, Danabasoglu G, Danilov S, Fernandez E, Fogli PG, Fujii Y, Griffies SM, Iovino D, Jahn A, Jung T, Large WG, Lee C, Lique C, Lu J, Masina S, Nurser AJG, Rabe B, Roth C, Salas y Mélia D, Samuels BL, Spence P, Tsujino H, Valcke S, Voldoire A, Wang X, Yeager SG (2016a) An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: liquid freshwater. Ocean Model 99:86–109

    Google Scholar 

  • Wang Q, Danilov S, Jung T, Kaleschke L, Wernecke A (2016b) Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends. Geophys Res Lett 43:7019–7027

    Google Scholar 

  • Wang Q, Ilicak M, Gerdes R, Drange H, Aksenov Y, Bailey DA, Bentsen M, Biastoch A, Bozec A, Böning C, Cassou C, Chassignet E, Coward AC, Curry B, Danabasoglu G, Danilov S, Fernandez E, Fogli PG, Fujii Y, Griffies SM, Iovino D, Jahn A, Jung T, Large WG, Lee C, Lique C, Lu J, Masina S, Nurser AJG, Rabe B, Roth C, Salas y Mélia D, Samuels BL, Spence P, Tsujino H, Valcke S, Voldoire A, Wang X, Yeager SG (2016c) An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: sea ice and solid freshwater. Ocean Model 99:110–132

    Google Scholar 

  • Wang Q, Wekerle C, Danilov S, Koldunov N, Sidorenko D, Sein D, Rabe B, Jung T (2018a) Arctic Sea ice decline significantly contributed to the unprecedented liquid freshwater accumulation in the Beaufort Gyre of the Arctic Ocean. Geophys Res Lett 45:4956–4964

    Google Scholar 

  • Wang Q, Wekerle C, Danilov S, Wang X, Jung T (2018b) A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4. Geosci Model Dev 11:1229–1255

    Google Scholar 

  • Wang Q, Wekerle C, Danilov S, Sidorenko D, Koldunov N, Sein D, Rabe B, Jung T (2019) Recent seaice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean. J Clim 32:15–32

    Google Scholar 

  • Wekerle C, Wang Q, Danilov S, Jung T, Schröter J (2013) The Canadian Arctic Archipelago throughflow in a multiresolution global model: model assessment and the driving mechanism of interannual variability. J Geophys Res Oceans 118(9):4525–4541. https://doi.org/10.1002/jgrc.20330

    Google Scholar 

  • Wekerle C, Wang Q, von Appen V, Danilov S, Schourup-Kristensen V, Thomas J (2017a) Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J Geophys Res Oceans 122:8385–8405

    Google Scholar 

  • Wekerle C, Wang Q, Danilov S, Schourup-Kristensen V, von Appen V, Thomas J (2017b) Atlantic water in the Nordic seas: locally eddy-permitting ocean simulation in a global setup. J Geophys Res Oceans 122:914–940. https://doi.org/10.1002/2016JC012121

    Google Scholar 

  • Woodgate R, Weingartner T, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett 39:L24603. https://doi.org/10.1029/2012GL054092

    Google Scholar 

  • Wu B, Wang J, Walsh J (2006) Dipole anomaly in the winter Arctic atmosphere and its association with Arctic sea ice motion. J Clim 19(2):210–225. https://doi.org/10.1175/JCLI3619.1

    Google Scholar 

  • Yin J (2012) Century to multi-century sea-level rise projections from CMIP5 models. Geophys Res Lett 39:L17709. https://doi.org/10.1029/2012GL052947

    Google Scholar 

Download references

Acknowledgments

We are very thankful to the Technical University of Denmark (DTU) for sharing the mean dynamic topography data of MTD13DTU (ftp.space.dtu.dk/pub/DTU13/). Arctic sea level anomaly data are provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography) (Armitage et al. 2016, 2017). Tide gauge data are from the Permanent Service for Mean Sea Level (http://www.psmsl.org/). EN4.2.1 gridded profiles are from Met Office Hadley Center (https://www.metoffice.gov.uk/hadobs/en4/). We thank the anonymous reviewers and the editor for their very helpful comments.

Funding

The study is financially supported by the National Key Research and Development Program of China (Grant 2017YFA0604600) and the National Natural Science Foundation of China (nos. 41576020, 41506006, 41376028, 41676019, and 41976163). QW is supported by the German Helmholtz Climate Initiative REKLIM (Regional Climate Change).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixiang Chen.

Additional information

Responsible Editor: Tal Ezer

This article is part of the Topical Collection on the 11th International Workshop on Modeling the Ocean (IWMO), Wuxi, China, 17-20 June 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Chen, M., Wang, Q. et al. Low-frequency sea level variability and impact of recent sea ice decline on the sea level trend in the Arctic Ocean from a high-resolution simulation. Ocean Dynamics 70, 787–802 (2020). https://doi.org/10.1007/s10236-020-01373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01373-5

Keywords

Navigation