Skip to main content
Log in

Mapping and validation of a fiber length QTL on chromosome D11 using two independent F2 populations of upland cotton

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The analysis of association between genotypic markers and phenotypic traits allows identification of quantitative trait loci (QTLs), which can be applied through marker-assisted selection in breeding programs to improve the quality of crops. However, success in these applications depends primarily on the stability and dominance of the QTL. We previously identified a significant fiber length (FL) QTL on chromosome (Chr.) D11 based on the genome-wide association study (GWAS) of a multi-parent advanced generation inter-cross (MAGIC) population in upland cotton. In this report, we conducted mapping studies with two bi-parental populations to confirm the stability of the FL QTL on Chr. D11 and determine the magnitude of its effect on the fiber length phenotype. One of the F2 populations was developed from a cross between the longest fiber and the shortest fiber recombinant inbred lines (RILs) of the MAGIC population originally used for GWAS, whereas the second F2 population was created from a cross between two cotton lines Acala 1517–80 and JJ1145ne, which were not among the eleven MAGIC parental lines. The populations were grown in different environmental conditions. Genetic mapping of these populations confirmed the stability of the FL QTL on Chr. D11. The highest LOD scores of association with fiber length in both populations showed three SNP markers that resided within 360 kb of the QTL region on Chr. D11. Ten genes possessing non synonymous SNPs (nsSNPs) in their protein coding regions were identified in this region. RNAseq analysis detected activity in developing fiber tissue for seven of these candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Basra AS, Malik C (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    Article  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124(4):1483–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38(suppl_2):W64–W70. https://doi.org/10.1093/nar/gkq310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120(5):943–953. https://doi.org/10.1007/s00122-009-1223-y

    Article  CAS  PubMed  Google Scholar 

  • Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC genomics 15(1):397

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert MK, Turley RB, Kim HJ, Li P, Thyssen G, Tang Y, Delhom CD, Naoumkina M, Fang DD (2013) Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1). BMC Genomics 14:403. https://doi.org/10.1186/1471-2164-14-403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert MK, Kim HJ, Tang Y, Naoumkina M, Fang DD (2014) Comparative transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms pertinent to fiber elongation in cotton (Gossypium hirsutum L.). PLoS One 9(4):e95554. https://doi.org/10.1371/journal.pone.0095554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104. https://doi.org/10.3389/fpls.2012.00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinchliffe DJ, Meredith WR, Delhom CD, Thibodeaux DP, Fang DD (2011a) Elevated growing degree days influence transition stage timing during cotton fiber development resulting in increased fiber-bundle strength. Crop Sci 51(4):1683–1692

    Article  Google Scholar 

  • Hinchliffe DJ, Turley RB, Naoumkina M, Kim HJ, Tang Y, Yeater KM, Li P, Fang DD (2011b) A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.). BMC Genomics 12:445. https://doi.org/10.1186/1471-2164-12-445

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 17(1):903. https://doi.org/10.1186/s12864-016-3249-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins J, McCarty J, Gutierrez O, Hayes R, Bowman D, Watson C, Jones D (2008) Registration of RMUP-C5, a random mated population of upland cotton germplasm. J Plant Registrations 2(3):239–242

    Article  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127(4):1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100(7):1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z-x, He D, X-l Z, Nie Y, Guo X, Feng C, Stewart JM (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124(2):180–187

    Article  CAS  Google Scholar 

  • Ma J, Geng Y, Pei W, Wu M, Li X, Liu G, Li D, Ma Q, Zang X, Yu S (2018a) Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics 19(1):882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G (2018b) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet:1

  • Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD (2013) Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutumL.). BMC Genomics 14(1):155. https://doi.org/10.1186/1471-2164-14-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Thyssen G, Fang DD, Hinchliffe DJ, Florane C, Yeater KM, Page JT, Udall JA (2014) The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.). PLoS One 9(3):e90830. https://doi.org/10.1371/journal.pone.0090830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD (2015) RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and - 2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation. BMC Plant Biol 15:65. https://doi.org/10.1186/s12870-015-0454-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Florane CB (2019) Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 20(1):112–114. https://doi.org/10.1186/s12864-019-5427-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson A, Saranga Y, Menz M, Jiang C-X, Wright R (2003) QTL analysis of genotype× environment interactions affecting cotton fiber quality. Theoret Appl Genetics 106(3):384–396

    Article  CAS  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Knapka JA, Song M, Zhang J (2015a) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum× G. barbadense populations. Mol Gen Genomics 290(4):1615–1625

    Article  CAS  Google Scholar 

  • Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J (2015b) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G.hirsutum × G.barbadense populations. Mol Gen Genomics 290(3):1003–1025. https://doi.org/10.1007/s00438-014-0963-9

    Article  CAS  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15(8):982–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taliercio EW, Boykin D (2007) Analysis of gene expression in cotton fiber initials. BMC Plant Biol 7:22. https://doi.org/10.1186/1471-2229-7-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaker VS, Saroop S, Vaishnav P, Singh Y (1989) Genotypic variations and influence of diurnal temperature on cotton fibre development. Field Crop Res 22(2):129–141

    Article  Google Scholar 

  • Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M (2014) Next generation genetic mapping of the Ligon-lintless-2 (Li2) locus in upland cotton (Gossypium hirsutum L.). Theoret Appl Genetics 127(10):2183–2192

    Article  CAS  Google Scholar 

  • Thyssen G, Jenkins J, McCarty J, Zeng L, Campbell T, Delhom C, Islam M, Li P, Jones DC, Condon B, Fang DD (2019) Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theoret Appl Genetics 132(4):989–999. https://doi.org/10.1007/s00122-018-3254-8

    Article  CAS  Google Scholar 

  • Verkest A, Weinl C, Inzé D, De Veylder L, Schnittger A (2005) Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol 139(3):1099–1106. https://doi.org/10.1104/pp.105.069906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Liu X, Liang S, Ge Q, Li Y, Shao J, Qi Y, An L, Yu F (2015) A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. J Exp Bot 66(20):6327–6343

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen L-L, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51(2):224–229. https://doi.org/10.1038/s41588-018-0282-x

    Article  CAS  PubMed  Google Scholar 

  • Yan H, You Q, Tian T, Yi X, Liu Y, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129. https://doi.org/10.1093/nar/gkx382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

  • Zhang J, Abdelraheem A, Flynn R (2019) Genetic gains of Acala 1517 cotton since 1926. Crop Sci 59(3):1052–1061. https://doi.org/10.2135/cropsci2018.11.0686

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the United States Department of Agriculture-Agricultural Research Service CRIS project 6054–21000-018-00D.

Author information

Authors and Affiliations

Authors

Contributions

MN conceive the research and wrote the manuscript; MN, LZ, DDF, CBF, and PL conducted F2 populations studies; MW and GNT performed bioinformatics analysis; DDF conceived the association study and provided genomic sequence data; CD performed fiber testing; all authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Marina Naoumkina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture which is an equal opportunity provider and employer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PNG 286 kb)

High resolution image (TIF 228 kb)

ESM 2

(PDF 66 kb)

ESM 3

(PDF 72 kb)

ESM 4

(PDF 40 kb)

ESM 5

(PDF 72 kb)

ESM 6

(XLSX 1632 kb)

ESM 7

(XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoumkina, M., Zeng, L., Fang, D.D. et al. Mapping and validation of a fiber length QTL on chromosome D11 using two independent F2 populations of upland cotton. Mol Breeding 40, 31 (2020). https://doi.org/10.1007/s11032-020-01111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01111-1

Keywords

Navigation