Skip to main content
Log in

Water wave scattering and energy dissipation by interface-piercing porous plates

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

An integral equation method is developed to study the wave interaction with two symmetric permeable plates submerged in a two-layer fluid. The plates are inclined and penetrate the common interface between the layers. The existence of two different wave modes for the incident wave gives rise to two problems. Both of these are tackled by reducing them to a set of coupled hypersingular integral equations of the second kind. Unknown functions of the integral equations are the discontinuities in the potential functions across portions of the plates. These are computed numerically by employing an expansion collocation method. New results for the reflection coefficients and the amount of energy loss are presented by varying several parameters such as porosity, angle of inclination, plate-length, separation between the plates, interface position and density ratio. Known results for two symmetric vertical permeable and impermeable plates, single vertical impermeable and horizontal permeable plates are recovered from the present analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Sollitt CK, Cross RH (1973) Wave transmission through permeable breakwaters. Coast Eng 20:1827–1846

    Google Scholar 

  2. Tuck EO (1975) Matching problems involving flow through small holes. Adv Appl Mech 15:89–158

    MathSciNet  Google Scholar 

  3. Macaskill C (1979) Reflexion of water waves by a permeable barrier. J Fluid Mech 95(1):141–157

    MATH  Google Scholar 

  4. Yu X (1995) Diffraction of water waves by porous breakwaters. J Waterw Port Coast Ocean Eng 121(6):275–282

    Google Scholar 

  5. Isaacson M, Baldwin J, Premasiri S, Yang G (1999) Wave interactions with double slotted barriers. Appl Ocean Res 21(2):81–91

    Google Scholar 

  6. Dalrymple RA, Losada MA, Martin PA (1991) Reflection and transmission from porous structures under oblique wave attack. J Fluid Mech 224:625–644

    MATH  Google Scholar 

  7. Evans DV, Peter MA (2011) Asymptotic reflection of linear water waves by submerged horizontal porous plates. J Eng Math 69(2–3):135–154

    MathSciNet  MATH  Google Scholar 

  8. McIver P (2005) Diffraction of water waves by a segmented permeable breakwater. J Waterw Port Coast Ocean Eng 131(2):69–76

    Google Scholar 

  9. Gayen R, Mondal A (2014) A hypersingular integral equation approach to the porous plate problem. Appl Ocean Res 46:70–78

    Google Scholar 

  10. Mondal D, Banerjea S (2016) Scattering of water waves by an inclined porous plate submerged in ocean with ice cover. Q J Mech Appl Mech 69(2):195–213

    MathSciNet  MATH  Google Scholar 

  11. Behera H, Kaligatla RB, Sahoo T (2015) Wave trapping by porous barrier in the presence of step type bottom. Wave Motion 57:219–230

    MathSciNet  MATH  Google Scholar 

  12. Behera H, Gayathri R, Selvan SA (2019) Wave attenuation by multiple outer porous barriers in the presence of an inner rigid cylinder. J Waterw Port Coast Ocean Eng 146(1):04019035

    Google Scholar 

  13. Gupta S, Gayen R (2018) Scattering of oblique water waves by two thin unequal barriers with non-uniform permeability. J Eng Math 112(1):37–61

    MathSciNet  MATH  Google Scholar 

  14. Gupta S, Gayen R (2019) Water wave interaction with dual asymmetric non-uniform permeable plates using integral equations. Appl Math Comput 346:436–451

    MathSciNet  MATH  Google Scholar 

  15. Linton CM, McIver M (1995) The interaction of waves with horizontal cylinders in two-layer fluids. J Fluid Mech 304:213–229

    MathSciNet  MATH  Google Scholar 

  16. Cadby JR, Linton CM (2000) Three-dimensional water-wave scattering in two-layer fluids. J Fluid Mech 423:155–173

    MathSciNet  MATH  Google Scholar 

  17. Linton CM, Cadby JR (2002) Scattering of oblique waves in a two-layer fluid. J Fluid Mech 461:343–364

    MathSciNet  MATH  Google Scholar 

  18. Ten I, Kashiwagi M (2004) Hydrodynamics of a body floating in a two-layer fluid of finite depth. Part 1. Radiation problem. J Mar Sci Technol 9(3):127–141

    Google Scholar 

  19. Sherief HH, Faltas MS, Saad EI (2004) Axisymmetric gravity waves in two-layered fluids with the upper fluid having a free surface. Wave Motion 40(2):143–161

    MathSciNet  MATH  Google Scholar 

  20. Chamberlain PG, Porter D (2005) Wave scattering in a two-layer fluid of varying depth. J Fluid Mech 524:207–228

    MathSciNet  MATH  Google Scholar 

  21. Kashiwagi M, Ten I, Yasunaga M (2006) Hydrodynamics of a body floating in a two-layer fluid of finite depth. Part 2. Diffraction problem and wave-induced motions. J Mar Sci Technol 11(3):150–164

    Google Scholar 

  22. Nazarov SA, Videman JH (2009) A sufficient condition for the existence of trapped modes for oblique waves in a two-layer fluid. Proc R Soc A Math Phys Eng Sci 465(2112):3799–3816

    MathSciNet  MATH  Google Scholar 

  23. Das D, Mandal BN (2010) Wave radiation by a sphere submerged in a two-layer ocean with an ice-cover. Appl Ocean Res 32(3):358–366

    Google Scholar 

  24. Behera H, Sahoo T (2014) Gravity wave interaction with porous structures in two-layer fluid. J Eng Math 87(1):73–97

    MathSciNet  MATH  Google Scholar 

  25. Paul S, De S (2017) Wave scattering by uneven porous bottom in a three layered channel. J Mar Sci Technol 22(3):533–545

    Google Scholar 

  26. Lin Q, Du XG, Kuang J, Song HF (2019) Forces and moments exerted by incident internal waves on a plate-cylinder structure in a two-layer fluid. Meccanica 54(10):1545–1560

    MathSciNet  Google Scholar 

  27. Levine H, Rodemich E (1958) Scattering of surface waves on an ideal fluid. Technical report, Stanford Univ. Ca. Applied Mathematics and Statistics labs

  28. Jarvis RJ (1971) The scattering of surface waves by two vertical plane barriers. J Inst Maths Appl 7:207–215

    MATH  Google Scholar 

  29. Newman JN (1974) Interaction of water waves with two closely spaced vertical obstacles. J Fluid Mech 66(1):97–106

    MATH  Google Scholar 

  30. Das P, Dolai DP, Mandal BN (1997) Oblique wave diffraction by parallel thin vertical barriers with gaps. J Waterw Port Coast Ocean Eng 123(4):163–171

    Google Scholar 

  31. Roy R, Mandal BN (2018) Water wave scattering by three thin vertical barriers with middle one partially immersed and outer two submerged. Meccanica 20:1–14

    Google Scholar 

  32. Mondal A, Gayen R (2015) Wave interaction with dual circular porous plates. J Mar Sci Appl 14(4):366–375

    Google Scholar 

  33. Karmakar D, Soares CG (2014) Wave transformation due to multiple bottom-standing porous barriers. Ocean Eng 80:50–63

    Google Scholar 

  34. Behera H, Ng CO (2018) Interaction between oblique waves and multiple bottom-standing flexible porous barriers near a rigid wall. Meccanica 53(4–5):871–885

    MathSciNet  Google Scholar 

  35. Shen YM, Zheng YH, Ng CO (2007) Interaction of oblique waves with an array of long horizontal circular cylinders. Sci China Ser E Technol Sci 50(4):490–509

    MathSciNet  MATH  Google Scholar 

  36. Das BC, De S, Mandal BN (2018) Oblique scattering by thin vertical barriers in deep water: solution by multi-term galerkin technique using simple polynomials as basis. J Mar Sci Technol 23(4):915–925

    Google Scholar 

  37. Gayen R, Mandal BN, Chakrabarti A (2005) Water-wave scattering by an ice-strip. J Eng Math 53(1):21–37

    MathSciNet  MATH  Google Scholar 

  38. Gayen R, Mandal BN, Chakrabarti A (2006) Water wave scattering by two sharp discontinuities in the surface boundary conditions. IMA J Appl Math 71(6):811–831

    MathSciNet  MATH  Google Scholar 

  39. Gayen R, Mandal BN, Chakrabarti A (2007) Water wave diffraction by a surface strip. J Fluid Mech 571:419–438

    MathSciNet  MATH  Google Scholar 

  40. Gayen R, Mandal BN (2009) Scattering of surface water waves by a floating elastic plate in two dimensions. SIAM J Appl Math 69(6):1520–1541

    MathSciNet  MATH  Google Scholar 

  41. Porter R, Porter D (2000) Water wave scattering by a step of arbitrary profile. J Fluid Mech 411:131–164

    MathSciNet  MATH  Google Scholar 

  42. Porter R, Evans DV (2007) Diffraction of flexural waves by finite straight cracks in an elastic sheet over water. J Fluids Struct 23(2):309–327

    Google Scholar 

  43. Dhillon H, Banerjea S, Mandal BN (2014) Wave scattering by a thin vertical barrier in a two-layer fluid. Int J Eng Sci 78:73–88

    MathSciNet  MATH  Google Scholar 

  44. Islam N, Gayen R (2018) Scattering of water waves by an inclined plate in a two-layer fluid. Appl Ocean Res 80:136–147

    Google Scholar 

  45. Yu X, Chwang AT (1994) Wave motion through porous structures. J Eng Mech 120(5):989–1008

    Google Scholar 

  46. Parsons NF, Martin PA (1994) Scattering of water waves by submerged curved plates and by surface-piercing flat plates. Appl Ocean Res 16(3):129–139

    Google Scholar 

  47. Porter R, Evans DV (1995) Complementary approximations to wave scattering by vertical barriers. J Fluid Mech 294:155–180

    MathSciNet  MATH  Google Scholar 

  48. Cho IH, Kim MH (2013) Transmission of oblique incident waves by a submerged horizontal porous plate. Ocean Eng 61:56–65

    Google Scholar 

  49. Kumar PS, Oh YM, Cho WC (2008) Surface and internal waves scattering by partial barriers in a two-layer fluid. J Korean Soc Coast Ocean Eng 20(1):25–33

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their constructive suggestions to revise the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najnin Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The expressions of the Green’s functions \({\mathcal {G}}^{(i)}_j(x_i,z_i;\xi _j,\eta _j)\) are given in this Appendix as follows:

$$\begin{aligned} \begin{aligned} {\mathcal {G}}^{(i)}_j(x_i,z_i;\xi _j,\eta _j)&={\mathcal {P}}^{(i)}_j\log r-{\mathcal {Q}}^{(i)}_j\log {r_1}\\&\quad -{\mathcal {R}}^{(i)}_j\log {r_2}-2\int ^{\infty }_0\\&\quad \times \frac{g^{(i)}_j(u;z_i,\eta _j)\cos u(x_i-\xi _j)}{u\Delta (u)}\text {d}u, \end{aligned} \end{aligned}$$
(40)

where \({\mathcal {P}}^{(1)}_1={\mathcal {P}}^{(1)}_2={\mathcal {P}}^{(2)}_2=1\), \({\mathcal {P}}^{(2)}_1=\rho \), \({\mathcal {Q}}^{(1)}_1={\mathcal {Q}}^{(1)}_2=1\), \({\mathcal {Q}}^{(2)}_1={\mathcal {Q}}^{(2)}_2=\rho \), \({\mathcal {R}}^{(1)}_1={\mathcal {R}}^{(2)}_1={\mathcal {R}}^{(2)}_1=0\), \({\mathcal {R}}^{(2)}_2=1-\rho \), \(r,r_2=\sqrt{(x_i-\xi _j)^2+(z_i\mp \eta _j)}, r_1=\sqrt{(x_i-\xi _j)^2+(2h+z_i+\eta _j)^2}\),

$$\begin{aligned} g^{(1)}_{1}(u;z_1,\eta _1)&=\Big [-\{(u\sinh uH-K\cosh uH)\\&\quad -\rho (u-K)\sinh uH\}{\text {e}}^{-uh}\\&\quad \times \sinh u(\eta _1+h)\{u\cosh u(z_1+h)\\&\quad -K\sinh u(z_1+h)\}+{\text {e}}^{-u(\eta _1+h)}\{(1-\rho )u^2\\&\quad \times \sinh uH\cosh uz_1+\rho uK\cosh u(z_1-H)\\&\quad -uK\cosh uH\cos uz_1\}\Big ],\\ g^{(2)}_{1}(u;z_2,\eta _1)&=\rho \Big [(u^2-K^2){\text {e}}^{-uh}\sinh uh\sinh u(\eta _1+h)\\&\quad \times (1-\rho +\rho {\text {e}}^{-uH}\cosh uH)+(u\sinh uh-K\cosh uh)\\&\quad \times (K\sinh uH-u\cosh uH)\sinh u(\eta _1+h){\text {e}}^{-u(h+H)}\\&\quad +uK{\text {e}}^{-u(\eta _1+h)}\Big ]\cosh u(H-z_2)-\rho {\text {e}}^{-u(h+H)}\\&\quad \times \sinh u(\eta _1+h)\Delta (u)\sinh u(H-z_2),\\ g^{(1)}_{2}(u;z_1,\eta _2)&=\{\rho (u^2-K^2)\sinh uh \sinh uH\\&\quad +K^2\sinh uh \\&\quad \times \cosh uH-u^2\sinh uh\sinh uH-uK\cosh uh {\text {e}}^{-uH}\}\\&\quad \times {\text {e}}^{-u(h+\eta _2)}\sinh u(z_1+h)-uK\cosh uH{\text {e}}^{-u(h+\eta _2)}\\&\quad \times (\cosh uz_1-\sinh uz_1)+K{\text {e}}^{-uH}\sinh u\eta _2\\&\quad \times \{K\sinh u(z_1+h)-u\cosh u(z_1+h)\},\\g^{(2)}_{2}(u;z_2,\eta _2)& =\Big [\{\rho ^2\\&\quad \times \sinh uh(u^2-K^2)\sinh uh \sinh uH\\&\quad -\rho \sinh uh(K\cosh uh-u\sinh uh)\times (u\cosh uH-K\\&\quad \times \sinh uH)\}{\text {e}}^{-u(h+H+\eta _2)}+\rho \{(K^2-u^2)\sinh ^2uh-uK\}{\text {e}}^{-u(h+\eta _2)}\\&\quad +(\rho -1)u{\text {e}}^{-u\eta _2}\\&\quad \times (K\cosh uh-u\sinh uh)+\rho {\text {e}}^{-uH}\\&\quad \times \sinh u\eta _2 \sinh uh \\&\quad \times \cosh uH(K^2-u^2)-{\text {e}}^{-uH}\sinh u\eta _2\\&\quad \times (u\cosh uH-K\sinh uH)(K\cosh uh-u\sinh uh)\Big ] \\&\quad \times \cosh u(H-z_2)-\{{\text {e}}^{-uH}\sinh u\eta _2\\&\quad +\rho {\text {e}}^{-u(h+H+\eta _2)}\sinh uh\}\Delta (u)\sinh u(H-z_2). \end{aligned}$$

Our analysis may be restricted to the region \(x\ge 0\) only due to the geometrical symmetry of the two plates about the z-axis. When the source point is in the upper layer, we first apply Green’s integral theorem to the functions \({\mathcal {G}}^{(1)S,A}_1(x_1,z_1;\xi _1,\eta _1)={\mathcal {G}}^{(1)}_1(x_1,z_1;\xi _1,\eta _1)\pm {\mathcal {G}}^{(1)}_1(-x_1,z_1;\xi _1,\eta _1)\) and the scattered velocity potentials \({\widehat{\varphi }}^{(1)S,A}_n=\varphi ^{(1)S,A}(x_1,z_1)-f^{(1)}_n(z_1){\text {e}}^{-\text {i}M_n(x_1-a)}\) in the region bounded by the lines \(z_1=-h,0 (0\le x_1\le X); x_1=0,X (-h\le z_1\le 0);\) a small circle of radius \(\varepsilon \) with center at \((\xi _1,\eta _1)\) and a contour enclosing the arc \(L_1\), and ultimately we make \(X\rightarrow \infty , \varepsilon \rightarrow 0\) and shrink the contour enclosing \(L_1\) in the two sides of \(L_1\). Using conditions 2 and 10, we obtain

$$\begin{aligned}&\int ^{0}_{-h}\Big ({\widehat{\varphi }}^{(1)S,A}_n\frac{\partial {\mathcal {G}}^{(1)S,A}_1}{\partial x_1}\nonumber \\&\quad -{\mathcal {G}}^{(1)S,A}_1\frac{\partial {\widehat{\varphi }}^{(1)S,A}_n}{\partial x_1}\Big )_{x_1=\infty }\text {d}z_1+\int ^{\infty }_0\Big ({\widehat{\varphi }}^{(1)S,A}_n\nonumber \\&\quad \times \frac{\partial {\mathcal {G}}^{(1)S,A}_1}{\partial z_1}-{\mathcal {G}}^{(1)S,A}_1\frac{\partial {\widehat{\varphi }}^{(1)S,A}_n}{\partial z_1}\Big )_{z_1=0}\text {d}x_1\nonumber \\&\quad +{\text {e}}^{\text {i}M_na}\int _{-h}^0\Big (\text {i}M_n {\mathcal {G}}^{(1)S}_1(0,z_1;\xi _1,\eta _1),\nonumber \\&\quad \times \frac{\partial {\mathcal {G}}^{(1)A}_1}{\partial x_1}(0,z_1;\xi _1,\eta _1)\Big ) f^{(1)}_n(z_1)\text {d}z_1\nonumber \\&\quad -\int _{L_1}[\varphi ^{(1)S,A}_n](q_1)\nonumber \\&\quad \times \frac{\partial {\mathcal {G}}^{(1)S,A}_1(q_1:\xi _1,\eta _1)}{\partial N_{q_1}}~\text {d}s_{q_1}\nonumber \\&\quad -2\pi {\widehat{\varphi }}^{(1)S,A}_n(\xi _1,\eta _1)=0. \end{aligned}$$
(41)

Again we apply Green’s integral theorem to the functions \({\mathcal {G}}^{(2)S,A}_1(x_2,z_2;\xi _1,\eta _1)={\mathcal {G}}^{(2)}_1(x_2,z_2;\xi _1,\eta _1)\pm {\mathcal {G}}^{(2)}_1(-x_2,z_2;\xi _1,\eta _1)\) and the scattered velocity potentials \({\widehat{\varphi }}^{(2)S,A}_n=\varphi ^{(2)S,A}(x_2,z_2)-f^{(2)}_n(z_2){\text {e}}^{-\text {i}M_n(x_2-a)}\) in the region bounded by the lines \(z_2=0,H (0\le x_2\le X); x_2=0,X (0\le z_2\le H);\) and a contour enclosing the arc \(L_2\), and ultimately we make \(X\rightarrow \infty ,\) and shrink the contour enclosing \(L_2\) in the two sides of \(L_2\). Using conditions 5 and 10, we obtain

$$\begin{aligned}&\int ^{H}_0\Bigg ({\widehat{\varphi }}^{(2)S,A}_n\frac{\partial {\mathcal {G}}^{(2)S,A}_1}{\partial x_2}\nonumber \\&\quad -{\mathcal {G}}^{(2)S,A}_1\frac{\partial {\widehat{\varphi }}^{(2)S,A}_n}{\partial x_2}\Bigg )_{x_2=\infty }\text {d}z_2\nonumber \\&\quad -\int ^{\infty }_0\Big ({\widehat{\varphi }}^{(2)S,A}_n\nonumber \\&\quad \times \frac{\partial {\mathcal {G}}^{(2)S,A}_1}{\partial z_2}-{\mathcal {G}}^{(2)S,A}_1\nonumber \\&\quad \times \frac{\partial {\widehat{\varphi }}^{(2)S,A}_n}{\partial z_2}\Big )_{z_2=0}\text {d}x_2\nonumber \\&\quad +{\text {e}}^{\text {i}M_na}\int _{0}^H\Big (\text {i}M_n {\mathcal {G}}^{(2)S}_1(0,z_2;\xi _2,\eta _1),\nonumber \\&\quad \times \frac{\partial {\mathcal {G}}^{(2)A}_1}{\partial x_2}(0,z_2;\xi _1,\eta _1)\Big ) f^{(2)}_n(z_2)\text {d}z_2\nonumber \\&\quad -\int _{L_2}[\varphi ^{(2)S,A}_n](q_2)\nonumber \\&\quad \times \frac{\partial {\mathcal {G}}^{(2)S,A}_1(q_2:\xi _1,\eta _1)}{\partial N_{q_2}}~\text {d}s_{q_2}=0. \end{aligned}$$
(42)

Multiplying Eq. 41 by \(\rho \) and adding to Eq. 42 and using the interface conditions we find

$$\begin{aligned}&-\int _{L_1} \rho [\varphi ^{(1)S,A}_n](q_1)\frac{\partial {\mathcal {G}}^{(1)S,A}_1(q_1:\xi _1,\eta _1)}{\partial N_{q_1}}~\text {d}s_{q_1}\nonumber \\&\quad -\int _{L_2} [\varphi ^{(2)S,A}_n](q_2)\frac{\partial {\mathcal {G}}^{(2)S,A}_1(q_2:\xi _1,\eta _1)}{\partial N_{q_2}}~\text {d}s_{q_2}\nonumber \\&\quad -2\pi \rho {\widehat{\varphi }}^{(1)S,A}_n(\xi _1,\eta _1)\\&\quad \pm 2\pi \rho f^{(1)}_n(\eta _1){\text {e}}^{\text {i}M_n(\xi _1+a)}=0. \end{aligned}$$

Thus, the above equation simplifies to

$$\begin{aligned}&\int _{L_1} \rho [\varphi ^{(1)S,A}_n](q_1)\nonumber \\&\qquad \times \frac{\partial {\mathcal {G}}^{(1)S,A}_1(q_1:\xi _1,\eta _1)}{\partial N_{q_1}}~\text {d}s_{q_1}+\int _{L_2} [\varphi ^{(2)S,A}_n](q_2)\nonumber \\&\qquad \times \frac{\partial {\mathcal {G}}^{(2)S,A}_1(q_2:\xi _1,\eta _1)}{\partial N_{q_2}}~\text {d}s_{q_2}\nonumber \\&\qquad +2\pi \rho \varphi ^{(1)S,A}(\xi _1,\eta _1)\nonumber \\&\quad =4\pi \rho {\text {e}}^{\text {i}M_na}f^{(1)}_n(\eta _1)(\cos (M_n\xi _1),\nonumber \\&\qquad -\text {i}\sin (M_n\xi _1)). \end{aligned}$$
(43)

Next, we consider the case when the source point is in the lower layer. Following a similar procedure as described above, we obtain

$$\begin{aligned}&\int _{L_1} \rho [\varphi ^{(1)S,A}_n](q_1)\frac{\partial {\mathcal {G}}^{(1)S,A}_2(q_1:\xi _2,\eta _2)}{\partial N_{q_1}}~\text {d}s_{q_1}\nonumber \\&\quad +\int _{L_2} [\varphi ^{(2)S,A}_n](q_2)\nonumber \\&\qquad \times \frac{\partial {\mathcal {G}}^{(2)S,A}_2(q_2:\xi _2,\eta _2)}{\partial N_{q_2}}~\text {d}s_{q_2}\nonumber \\&\qquad +2\pi \varphi ^{(2)S,A}(\xi _2,\eta _2)\nonumber \\&\quad =4\pi {\text {e}}^{\text {i}M_na}f^{(2)}_n(\eta _2)(\cos (M_n\xi _2),-\text {i}\sin (M_n\xi _2)). \end{aligned}$$
(44)

Appendix 2

The functions \({\mathcal {H}}^{(i)S,A}_j(t,s)\) given in 23 are computed by taking repeated normal derivatives of \({\mathcal {G}}^{(i)S,A}_{j}(q_i:p_j)\). The final explicit expression of \({\mathcal {H}}^{(i)S,A}_j(t,s)\) are

$$\begin{aligned} {\mathcal {H}}^{(i)S,A}_j(t,s)&=-\lambda ^{(i)}_{j}\frac{1}{(tb_i+sb_j)^2}+A^{(i)}_{j}\nonumber \\&\quad \times \Bigg [\frac{(Z^{(i)}_j+2h)^2-(X^{(i)}_j)^2}{\{(Z^{(i)}_j+2h)^2+(X^{(i)}_j)^2\}^2}\nonumber \\&\quad \pm \frac{(Z^{(i)}_{1j})^2-(X^{(i)}_{1j})^2}{\{(Z^{(i)}_{1j})^2+(X^{(i)}_{1j})^2\}^2}\mp \nonumber \\&\quad \times \cos 2\theta \frac{(Z^{(i)}_j+2h)^2-(X^{(i)}_{1j})^2}{\{(Z^{(i)}_j+2h)^2+(X^{(i)}_{1j})^2\}^2}\nonumber \\&\quad \pm 2\sin 2\theta \frac{(Z^{(i)}_j+2h)(X^{(i)}_{1j})}{\{(Z^{(i)}_j+2h)^2+(X^{(i)}_{1j})^2\}^2}\Bigg ]\nonumber \\&\quad +B^{(i)}_{j}\Bigg [\frac{(Z^{(i)}_{j})^2-(X^{(i)}_{j})^2}{\{(Z^{(i)}_{j})^2+(X^{(i)}_{j})^2\}^2}\nonumber \\&\quad \pm \frac{(Z^{(i)}_{1j})^2-(X^{(i)}_{1j})^2}{\{(Z^{(i)}_{1j})^2+(X^{(i)}_{1j})^2\}^2}\nonumber \\&\quad \mp \cos 2\theta \frac{(Z^{(i)}_j)^2-(X^{(i)}_{1j})^2}{\{(Z^{(i)}_j)^2+(X^{(i)}_{1j})^2\}^2}\nonumber \\&\quad \pm \sin 2\theta \frac{(Z^{(i)}_j)(X^{(i)}_{1j})}{\{(Z^{(i)}_j)^2+(X^{(i)}_{1j})^2\}^2}\Bigg ]\nonumber \\&\quad -\Bigg [2\pi \text {i}\sum \limits _{n=I}^{II}M_n\{C^{(i)}_{j}(M_n;z_i,\eta _j)\nonumber \\&\quad +\frac{1}{\text {i}}D^{(i)}_{j}(M_n;z_i,\eta _j)\}\frac{{\text {e}}^{iM_n\mid X^{(i)}_j\mid }}{\Delta ^{'}(M_n)}\nonumber \\&\quad \pm 2\pi \text {i}\sum \limits _{n=I}^{II}M_n\{E^{(i)}_{j}(M_n;z_i,\eta _j)\nonumber \\&\quad +\frac{1}{\text {i}}F^{(i)}_{j}(M_n;z_i,\eta _j)\}\frac{{\text {e}}^{iM_n\mid X^{(i)}_{1j}\mid }}{\Delta ^{'}(M_n)}\Bigg ]\nonumber \\&\quad -\Bigg [\text {i}\int ^{\infty }_0r\{C^{(i)}_{j}(r{\text {e}}^{\text {i}\frac{\pi }{4}};z_i,\eta _j)+\frac{1}{\text {i}}D^{(i)}_{j}(r{\text {e}}^{\text {i}\frac{\pi }{4}};z_i,\eta _j)\}\nonumber \\&\quad \times \frac{{\text {e}}^{ir{\text {e}}^{\text {i}\frac{\pi }{4}}\mid X^{(i)}_j\mid }}{\Delta ^(r{\text {e}}^{\text {i}\frac{\pi }{4}})}\text {d}r\nonumber \\&\quad +\text {i}\int ^{\infty }_0r\{-C^{(i)}_{j}(r{\text {e}}^{-\text {i}\frac{\pi }{4}};z_i,\eta _j)\nonumber \\&\quad +\frac{1}{\text {i}}D^{(i)}_{j}(r{\text {e}}^{-\text {i}\frac{\pi }{4}};z_i,\eta _j)\}\frac{{\text {e}}^{-ir{\text {e}}^{\text {i}\frac{\pi }{4}}\mid X^{(i)}_j\mid }}{\Delta ^(r{\text {e}}^{-\text {i}\frac{\pi }{4}})}\text {d}r\nonumber \\&\quad \pm \text {i}\int ^{\infty }_0r\{E^{(i)}_{j}(r{\text {e}}^{\text {i}\frac{\pi }{4}};z_i,\eta _j)\nonumber \\&\quad +\frac{1}{\text {i}}F^{(i)}_{j}(r{\text {e}}^{\text {i}\frac{\pi }{4}};z_i,\eta _j)\}\frac{{\text {e}}^{ir{\text {e}}^{\text {i}\frac{\pi }{4}}\mid X^{(i)}_{1j}\mid }}{\Delta ^(r{\text {e}}^{\text {i}\frac{\pi }{4}})}\text {d}r\nonumber \\&\quad \pm \text {i}\int ^{\infty }_0r\{-E^{(i)}_{j}(r{\text {e}}^{-\text {i}\frac{\pi }{4}};z_i,\eta _j)\nonumber \\&\quad +\frac{1}{\text {i}}F^{(i)}_{j}(r{\text {e}}^{-\text {i}\frac{\pi }{4}};z_i,\eta _j)\}\frac{{\text {e}}^{-ir{\text {e}}^{\text {i}\frac{\pi }{4}}\mid X^{(i)}_{1j}\mid }}{\Delta ^(r{\text {e}}^{-\text {i}\frac{\pi }{4}})}\text {d}r\Bigg ]. \end{aligned}$$
(45)

The various quantities appearing in 45 are given by \(\lambda ^{(1)}_{1}=\lambda ^{(2)}_{2}=0\),\(\lambda ^{(2)}_{1}=\lambda ^{(1)}_{2}=1\),\(A^{(1)}_{1}=A^{(1)}_{2}=1,A^{(2)}_{1}=A^{(2)}_{2}=\rho \),\(B^{(1)}_{1}=B^{(1)}_{2}=B^{(2)}_{1}=0,B^{(2)}_{2}=1-\rho \), \(X^{(i)}_j=x_i-\xi _j\), \(Z^{(i)}_j=z_i+\eta _j\), \(X^{(i)}_{1j}=x_i+\xi _j\), \(Z^{(i)}_{1j}=z_i-\eta _j\), \(C^{(i)}_{j}(u;z_i,\eta _j)=\cos ^2\theta g^{(i)}_{j}(u;z_i,\eta _j)+\sin ^2\theta \frac{1}{u^2}\frac{\partial ^{2}g^{(i)}_{j}}{\partial z_i\partial \eta _j}(u;z_i,\eta _j)\), \(D^{(i)}_{j}(u;z_i,\eta _j)=\cos \theta \sin \theta \{ -\frac{1}{u}\frac{\partial g^{(i)}_{j}}{\partial \eta _j}(u;z_i,\eta _j)+\frac{1}{u}\frac{\partial g^{(i)}_{j}}{\partial z_i}(u;z_i,\eta _j)\}\), \(E^{(i)}_{j}(u;z_i,\eta _j)=-\cos ^2\theta g^{(i)}_{j}(u;z_i,\eta _j)+\sin ^2\theta \frac{1}{u^2}\frac{\partial ^{2}g^{(i)}_{j}}{\partial z_i\partial \eta _j}(u;z_i,\eta _j)\), \(F^{(i)}_{j}(u;z_i,\eta _j)=\cos \theta \sin \theta \{ -\frac{1}{u}\frac{\partial g^{(i)}_{j}}{\partial \eta _j}(u;z_i,\eta _j)-\frac{1}{u}\frac{\partial g^{(i)}_{j}}{\partial z_i}(u;z_i,\eta _j)\}\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, N., Gayen, R. Water wave scattering and energy dissipation by interface-piercing porous plates. J Mar Sci Technol 26, 108–127 (2021). https://doi.org/10.1007/s00773-020-00725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-020-00725-6

Keywords

Navigation