Skip to main content
Log in

Serum levels of interleukin-32 and interleukin-6 in granulomatosis with polyangiitis and microscopic polyangiitis: association with clinical and biochemical findings

  • Original Article
  • Published:
European Cytokine Network Aims and scope

Abstract

Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is an autoimmune disorder of unknown etiology with dysregulated cytokines levels. Objectives: The main aim of this study was to assess the clinical correlation between antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, granulomatosis with polyangiitis (GPA) serum levels of the microscopic polyangiitis (MPA), serum levels of the proinflammatory cytokines, interleukin (IL)-32 and interleukin-6. Methods: Study included 71 patients, 47 with GPA and 24 with MPA. Serum IL-32 and IL-6 concentrations were analyzed in all patients, and compared with levels observed in 10 controls. IL-32 and IL-6 were evaluated using DuoSet and Quantikine HS ELISA, respectively. IL-32 and IL-6 concentrations were correlated with disease-related clinical and laboratory findings. Results: IL-32 and IL-6 levels were significantly higher in GPA and MPA than in controls, especially IL-32 levels in GPA were elevated. IL-32 concentrations correlated positively with anti-proteinase 3 - ANCA (PR3-ANCA) levels in GPA (P < 0.0001), and with anti-myeloperoxidase ANCA (MPO-ANCA) in MPA(P = 0.049). IL-32 levels correlated positively with disease activity inGPA and MPA(P < 0.0001). GPA patients with pulmonary, cutaneous, and musculoskeletal involvement presented the highest IL-6 serum levels. Cutaneous manifestations correlated positively with IL-6 levels in MPA patients (P = 0.05). ANCA-positive patients with GPA expressed significantly high IL-6 levels (P = 0.036). No significant difference in IL-32 values was observed between ANCA-positiveandANCA-negativepatients. Conclusions: Patientswith GPAandMPApresenthigher serumIL-32 and IL-6 levels than controls. IL-32 levels correlate positively with disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gomez-Puerta JA, Bosch X. Anti-neutrophil cytoplasmic antibody pathogenesis in small-vessel vasculitis: an update. Am J Pathol 2009; 2009: 1790–8.

    Article  Google Scholar 

  2. Kallenberg CG. Key advances in the clinical approach to ANCA-associated vasculitis. Nat Rev Rheumatol 2014; 2014: 484–93.

    Article  Google Scholar 

  3. Cornec D, Cornec-Le Gall E, Fervenza FC, Specks U. ANCA-associated vasculitis - clinical utility of using ANCA specificity to classify patients. Nat Rev Rheumatol 2016; 2016: 570–9.

    Article  Google Scholar 

  4. Tadema H, Heeringa P, Kallenberg CG. Bacterial infections in Wegener’s granulomatosis: mechanisms potentially involved in autoimmune pathogenesis. Curr Opin Rheumatol 2011; 2011: 366–71.

    Article  Google Scholar 

  5. Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JW. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther 2010; 121: 204.

    Article  Google Scholar 

  6. Chen M, Kallenberg CG. ANCA-associated vasculitides - advances in pathogenesis and treatment. Nat Rev Rheumatol 2010; 2010: 653–64.

    Article  Google Scholar 

  7. Al-Hussain T, Hussein MH, Conca W, Al Mana H, Akhtar M. Pathophysiology of ANCA-associated Vasculitis. Adv Anat Pathol 2017; 2017: 226–34.

    Article  Google Scholar 

  8. Abdulahad WH, Stegeman CA, Kallenberg CG. Review article: The role of CD4(+) T cells in ANCA-associated systemic vasculitis. Nephrology (Carlton) 2009; 2009: 26–32.

    Article  Google Scholar 

  9. Kallenberg CG. Advances in pathogenesis and treatment of ANCA-associated vasculitis. Discov Med 2014; 2014: 195–201.

    Google Scholar 

  10. Bae S, Kim YG, Choi J, et al. Elevated interleukin-32 expression in granulomatosis with polyangiitis. Rheumatology (Oxford) 2012; 2012: 1979–88.

    Article  Google Scholar 

  11. Novick D, Rubinstein M, Azam T, Rabinkov A, Dinarello CA, Kim SH. Proteinase 3 is an IL-32 binding protein. Proc Natl Acad Sci USA 2006; 2006: 3316–21.

    Article  Google Scholar 

  12. Csernok E, Holle JU, Gross WL. Proteinase 3, protease-activated receptor-2 and interleukin-32: linking innate and autoimmunity in Wegener’s granulomatosis. Clin Exp Rheumatol 2008; 261: S112–7.

    Google Scholar 

  13. Khawar B, Abbasi MH, Sheikh N. A panoramic spectrum of complex interplay between the immune system and IL-32 during pathogenesis of various systemic infections and inflammation. Eur J Med Res 2015; 201: 7.

    Article  Google Scholar 

  14. Dinarello CA, Kim SH. IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 2006; 65(Suppl. 31): iii61–4.

    PubMed  PubMed Central  Google Scholar 

  15. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 2005; 2005: 131–42.

    Google Scholar 

  16. Netea MG, Azam T, Ferwerda G, et al. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci USA 2005; 2005: 16309–14.

    Article  Google Scholar 

  17. Netea MG, Lewis EC, Azam T, et al. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci USA 2008; 2008: 3515–20.

    Article  Google Scholar 

  18. Shimizu M, Sekiguchi T, Kishi N, et al. A case of a 6-year-old girl with anti-neutrophil cytoplasmic autoantibody-negative pauci-immune crescentic glomerulonephritis. Clin Exp Nephrol 2011; 2011: 596–601.

    Article  Google Scholar 

  19. Ohlsson S, Wieslander J, Segelmark M. Circulating cytokine profile in anti-neutrophilic cytoplasmatic autoantibody-associ-ated vasculitis: prediction of outcome? Mediators Inflamm 2004; 2004: 275–83.

    Article  Google Scholar 

  20. Berti A, Cavalli G, Campochiaro C, et al. Interleukin-6 in ANCA-associated vasculitis: Rationale for successful treatment with tocilizumab. Semin Arthritis Rheum 2015; 2015: 48–54.

    Article  Google Scholar 

  21. Ohta N, Fukase S, Aoyagi M. Serum levels of soluble adhesion molecules ICAM-1, VCAM-1 and E-selectin in patients with Wegener’s granulomatosis. Auris Nasus Larynx 2001; 2001: 311–4.

    Article  Google Scholar 

  22. Muller Kobold AC, Kallenberg CG, Tervaert JW. Monocyte activation in patients with Wegener’s granulomatosis. Ann Rheum Dis 1999; 1999: 237–45.

    Article  Google Scholar 

  23. Booth AD, Wallace S, McEniery CM, et al. Inflammation and arterial stiffness in systemic vasculitis: a model of vascular inflammation. Arthritis Rheum 2004; 2004: 581–8.

    Article  Google Scholar 

  24. Berti A, Warner R, Johnson K, et al. Brief report: Circulating cytokine profiles and antineutrophil cytoplasmic antibody specificity in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol 2018; 2018: 1114–21.

    Article  Google Scholar 

  25. Leavitt RY, Fauci AS, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Wegener’s granulomatosis. Arthritis Rheum 1990; 1990: 1101–7.

    Google Scholar 

  26. Khan I, Watts RA. Classification of ANCA-associated vasculitis. Curr Rheumatol Rep 2013; 151: 383.

    Article  Google Scholar 

  27. Mukhtyar C, Lee R, Brown D, et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann Rheum Dis 2009; 2009: 1827–32.

    Article  Google Scholar 

  28. Hellmich B, Flossmann O, Gross WL, et al. EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-associated vasculitis. Ann Rheum Dis 2007; 2007: 605–17.

    Article  Google Scholar 

  29. Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol 2017; 81: 405.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by grant from Medical University in Wrocław, grant number: STM. C250.16.025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Krajewska (Wojciechowska).

Additional information

Disclosure. The authors declare they have no conflicts of interests

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajewska (Wojciechowska), J., Koṡcielska-Kasprzak, K., Krajewski, W. et al. Serum levels of interleukin-32 and interleukin-6 in granulomatosis with polyangiitis and microscopic polyangiitis: association with clinical and biochemical findings. Eur Cytokine Netw 30, 151–159 (2019). https://doi.org/10.1684/ecn.2019.0439

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2019.0439

Keywords

Navigation