Skip to main content
Log in

Molecular Dynamics Study of Tension Process of Ni-Based Superalloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

To understand the atomistic mechanisms of tension failure of Ni-based superalloy, in this study, the classical molecular dynamics (MD) simulations were used to study the uniaxial tension processes of both the Ni/Ni3Al interface systems and the pure Ni and Ni3Al systems. To examine the effects of interatomic potentials, we adopted embedded atom method (EAM) and reactive force field (ReaxFF) in the MD simulations. The results of EAM simulations showed that the amorphous structures and voids formed near the interface, facilitating further crack propagation within Ni matrix. The EAM potentials also predicted that dislocations were generated and annihilated alternatively, leading to the oscillation of yielding stress during the tension process. The ReaxFF simulations predicted more amorphous formation and larger tensile strength. The atomistic understanding of the defect initiation and propagation during tension process may help to develop the strengthening strategy for controlling the defect evolution under loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  2. W. Betteridge, S.W.K. Shaw, Mater. Sci. Technol. 3, 682 (1987)

    CAS  Google Scholar 

  3. C.T. Sims, N.S. Stoloff, W.C. Hagel. Superalloys II (Wiley, New York, 1987)

    Google Scholar 

  4. K.A. Green, T.M. Pollock, H. Harada, in Proceedings of the Tenth International Symposium on the Superalloys (TMS, Warrendale, 2004), pp. 381–390

  5. Madeleine. Durand-Charre, Microstruct. Superalloys (2017). https://doi.org/10.1201/9780203736388

    Article  Google Scholar 

  6. H. Harada, H. Murakami, Springer Series in Materials Science (Springer, Berlin, 1999), p. 39

    Google Scholar 

  7. J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki, J. R. Metall. Mater. Trans. A 33, 3741 (2002)

    Google Scholar 

  8. J. Yu, Q. Zhang, R. Liu, Z. Yue, M. Tang, X. Li, RSC Adv. 4, 32749 (2014)

    CAS  Google Scholar 

  9. R.C. Reed, D.C. Cox, C.M.F. Rae, Mater. Sci. Technol. A 23, 893 (2007)

    CAS  Google Scholar 

  10. Y.G. Zhang, Y.F. Han, G.L. Chen, J.T. Guo, X.J. Wan, D. Feng, Structural Intermetallics (National Defense Industry Press, Beijing, 2001), p. 120

    Google Scholar 

  11. J.D. Nystrom, T.M. Pollock, W.H. Murphy, A. Garg, Metall. Mater. Trans. A 28, 2443 (1997)

    Google Scholar 

  12. P.J. Warren, A. Cerezo, G.D.W. Smith, Mater. Sci. Eng. A 250, 88 (1998)

    Google Scholar 

  13. K.E. Yoon, D. Isheim, R.D. Noebe, D.N. Seidman, Interface Sci. 9, 249 (2001)

    CAS  Google Scholar 

  14. J. Rüsing, N. Wanderka, U. Czubayko, V. Naundorf, D. Mukherji, J. Rösler, Scr. Mater. 46, 235 (2002)

    Google Scholar 

  15. A. Mottura, R.T. Wu, M.W. Finnis, R.C. Reed, Acta Mater. 56, 2669 (2008)

    CAS  Google Scholar 

  16. A. Mottura, N. Warnken, M.K. Miller, M.W. Finnis, R.C. Reed, Acta Mater. 58, 931 (2010)

    CAS  Google Scholar 

  17. J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, Acta Mater. 51, 5073 (2003)

    CAS  Google Scholar 

  18. J.X. Zhang, H. Harada, Y. Koizumi, J. Mater. Res. 21, 647 (2006)

    Google Scholar 

  19. J.X. Zhang, H. Harada, Y. Ro, Y. Koizumi, T. Kobayashi, Acta Mater. 56, 2975 (2008)

    CAS  Google Scholar 

  20. B. Reppich, Acta Metall. 30, 87 (1982)

    CAS  Google Scholar 

  21. B. Reppich, P. Schepp, G. Wehner, Acta Metall. 30, 95 (1982)

    CAS  Google Scholar 

  22. E. Nembach, K. Suzuki, M. Ichihara, S. Takeuchi, Philos. Mag. A 51, 607 (1985)

    CAS  Google Scholar 

  23. E. Nembach, Particle Strengthening of Metals and Alloys (Wiley, New York, 1996), pp. 22–27

    Google Scholar 

  24. J.K. Kim, H.J. Park, D.N. Shim, Acta Metall. Sin. (Engl. Lett.) 29, 1 (2016)

    Google Scholar 

  25. W.P. Wu, Y.F. Guo, Y.S. Wang, Philos. Mag. 91, 357 (2011)

    CAS  Google Scholar 

  26. Y.L. Li, W.P. Wu, Z.G. Ruan, Acta Metall. Sin. (Engl. Lett.) 29, 689 (2016)

    CAS  Google Scholar 

  27. N.L. Li, W.P. Wu, K. Nie., Phys. Lett. A 382, 1361 (2018)

    CAS  Google Scholar 

  28. K. Yashiro, M. Naito, Y. Tomita, Int. J. Mech. Sci. 44, 1845 (2002)

    Google Scholar 

  29. A. Prakash, J. Guénolé, J. Wang, Acta Mater. 92, 33 (2015)

    CAS  Google Scholar 

  30. P. Zhao, C. Shen, S.R. Niezgoda, Int. J. Plast. 109, 153 (2018)

    CAS  Google Scholar 

  31. S.Y. Ma, J.X. Zhang, Mol. Simul. 42, 102 (2016)

    CAS  Google Scholar 

  32. S.A. Sajjadi, S. Nategh, M. Isac, S.M. Zebarjad, J. Mater. Process. Technol. 155, 1900 (2004)

    Google Scholar 

  33. P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, X.L. Song, J. Alloys Compd. 694, 502 (2017)

    CAS  Google Scholar 

  34. G.P. Purja Pun, Y. Mishin, Philos. Mag. 89, 3245 (2009)

    CAS  Google Scholar 

  35. K.S. Yun, H. Kwak, C. Zou, J. Phys. Chem. A 116, 12163 (2012)

    Google Scholar 

  36. W.X. Song, S.J. Zhao, Chin. J. Energ. Mater. 20, 571 (2012)

    CAS  Google Scholar 

  37. C. Zou, Y.K. Shin, A.C.T. Van Duin, H. Fang, Z.K. Liu, Acta Mater. 83, 102 (2015)

    CAS  Google Scholar 

  38. H. Kwak, Y.K. Shin, A.C.T. Van Duin, A.V. Vasenkov, J. Phys. Condens. Matter 24, 485006 (2012)

    Google Scholar 

  39. S. Plimpton, Comput. Phys. 117, 1–19 (1995)

    CAS  Google Scholar 

  40. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Google Scholar 

  41. E.H. Megchiche, S. Pérusin, J.C. Barthelat, C. Mijoule, Phys. Rev. B 74, 064111 (2006)

    Google Scholar 

  42. P.S. Maiya, J.M. Blakely, J. Appl. Phys. 38, 698 (1967)

    CAS  Google Scholar 

  43. U.R. Kattner, T.B. Massalski, Binary alloy phase diagrams (ASM International, Materials Park, 1990), p. 147

    Google Scholar 

  44. H.J. Peng, Y.Q. Xie, Y.Z. Nie, Mater. Rep. 21, 131 (2007)

    Google Scholar 

  45. T.R. Lee, C.P. Chang, P.W. Kao, Mater. Sci. Eng. A 408, 131 (2005)

    Google Scholar 

  46. L. Ma, S. Xiao, H. Deng, W. Hu, Phys. Status Solidi B 253, 726 (2016)

    CAS  Google Scholar 

  47. H.T. Li, Y.C. Liang, W.L. Zhong, X.Z. Qin, J.T. Guo, L.Z. Zhou, W.L. Ren, Acta Metall. Sin. (Engl. Lett.) 30, 280 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0701502 and 2017YFB0702901) and the National Nature Science Foundation of China (Grant No. 91641128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Additional information

Available online at http://link.springer.com/journal/40195.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Du, W. & Liu, Y. Molecular Dynamics Study of Tension Process of Ni-Based Superalloy. Acta Metall. Sin. (Engl. Lett.) 33, 741–750 (2020). https://doi.org/10.1007/s40195-020-01004-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01004-4

Keywords

Navigation