Skip to main content
Log in

Gravity waves oscillations at semicircular and general 2D containers: an efficient computational approach to 2D sloshing problem

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We compute the natural frequencies for the oscillations of the free boundary of gravity waves in contact with a solid container. First, we study the case of a semicircular shaped container. We deduce an integrodifferential evolutionary equation for the linearized free boundary and impose pinned-end and free-end boundary conditions. For both cases, the natural oscillations frequencies for the free surfaces are provided and compared with the frequencies in the absence of solid walls. Then, we study the effect of having an underwater rectangle-shaped bottom in a rectangular container and the corresponding frequencies. The method introduced can be applied to arbitrary 2D containers, with all the information on their geometry contained into a matrix (related to the conformal mapping into a half-plane) that appears as a factor in a linear system for the computation of eigenfrequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alazard, T., Baldi, P., Han-Kwan, D.: Control of water waves. arXiv preprint arXiv:1501.06366 (2015)

  2. Asmar, N., Jones, G.: Applied Complex Analysis with Partial Differential Equations. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  3. Benjamin, T.B., Scott, J.C.: Gravity–capillary waves with edge constraints. J. Fluid Mech. 92(2), 241–267 (1979)

    Article  MathSciNet  Google Scholar 

  4. Bostwick, J., Steen, P.: Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. J. Fluid Mech. 714, 312–335 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bostwick, J., Steen, P.: Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47, 539–568 (2015)

    Article  MathSciNet  Google Scholar 

  6. Budiansky, B.: Sloshing of liquids in circular canals and spherical tanks. J. Aerosp. Sci. 27(3), 161–173 (1960)

    Article  MathSciNet  Google Scholar 

  7. Chang, H.-K., Liou, J.-C.: Long wave reflection from submerged trapezoidal breakwaters. Ocean Eng. 34(1), 185–191 (2007)

    Article  Google Scholar 

  8. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–deVries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  Google Scholar 

  9. Fontelos, M.A., Lecaros, R., López-Ríos, J., Ortega, J.H.: Stationary shapes for 2-D water-waves and hydraulic jumps. J. Math. Phys. 57(8), 081520 (2016)

    Article  MathSciNet  Google Scholar 

  10. Fontelos, M.A., Lecaros, R., López-Ríos, J., Ortega, J.H.: Bottom detection through surface measurements on water waves. SIAM J. Control Optim. 55(6), 3890–3907 (2017)

    Article  MathSciNet  Google Scholar 

  11. Godoy, E., Osses, A., Ortega, J.H., Valencia, A.: Modeling and control of surface gravity waves in a model of a copper converter. Appl. Math. Model. 32(9), 1696–1710 (2008)

    Article  MathSciNet  Google Scholar 

  12. Graham-Eagle, J.: A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 94, pp. 553–564. Cambridge University Press (1983)

  13. Hasheminejad, S.M., Aghabeigi, M.: Liquid sloshing in half-full horizontal elliptical tanks. J. Sound Vib. 324(1–2), 332–349 (2009)

    Article  Google Scholar 

  14. Hochstadt, H.: Integral Equations, vol. 91. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  15. Kim, H.J., Fontelos, M.A., Hwang, H.J.: Capillary oscillations at the exit of a nozzle. IMA J. Appl. Math. 80(4), 931–962 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kunkel, C.M., Hallberg, R.W., Oppenheimer, M.: Coral reefs reduce tsunami impact in model simulations. Geophys. Res. Lett. 33(23), L23612 (2006)

    Article  Google Scholar 

  17. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics, vol. 188. American Mathematical Society, Washington (2013)

    MATH  Google Scholar 

  18. Madsen, O.S., Mei, C.C.: The transformation of a solitary wave over an uneven bottom. J. Fluid Mech. 39(4), 781–791 (1969)

    Article  Google Scholar 

  19. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  20. Nalimov, V.: The Cauchy–Poisson problem. Dyn. Splosh. Sredy 18, 104–210 (1974)

    MathSciNet  Google Scholar 

  21. Nehari, Z.: Conformal Mapping. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  22. Nersisyan, H., Dutykh, D., Zuazua, E.: Generation of 2D water waves by moving bottom disturbances. IMA J. Appl. Math. 80(4), 1235–1253 (2014)

    Article  MathSciNet  Google Scholar 

  23. Nicolás, J.A.: Effects of static contact angles on inviscid gravity–capillary waves. Phys. Fluids 17(2), 022101 (2005)

    Article  MathSciNet  Google Scholar 

  24. Struik, D.J.: Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie. Math. Ann. 95(1), 595–634 (1926)

    Article  MathSciNet  Google Scholar 

  25. Weinberger, H.: A First Course in Partial Differential Equations: With Complex Variables and Transform Methods. Dover Books on Mathematics. Dover Publications, Mineola (2012)

    Google Scholar 

  26. Yosihara, H.: Capillary–gravity waves for an incompressible ideal fluid. Kyoto J. Math. 23(4), 649–694 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M.A. Fontelos was partially supported by Ministerio de Economía, Industria y Competitividad, Gobierno de España (Grant No. MTM2017-89423-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fontelos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontelos, M.A., López-Ríos, J. Gravity waves oscillations at semicircular and general 2D containers: an efficient computational approach to 2D sloshing problem. Z. Angew. Math. Phys. 71, 75 (2020). https://doi.org/10.1007/s00033-020-01299-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01299-4

Mathematics Subject Classification

Keywords

Navigation