Skip to main content
Log in

Transmission of waves across atomic step discontinuities in discrete nanoribbon structures

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Scalar wave propagation across a semi-infinite step or step-like discontinuity on any one boundary of the square lattice waveguides is considered within nearest-neighbour interaction approximation. An application of the Wiener–Hopf method does yield an exact solution of the discrete scattering problem, using which, as the main result of the paper, the transmission coefficients for energy flux are obtained. It is assumed that a wave mode is incident from either side of the step and the question addressed is what fraction of incident energy is transmitted across the atomic step discontinuity. A total of ten configurations are presented that arise due to various placements of discrete Dirichlet and Neumann boundary conditions on the waveguide. Numerical illustrations of a measure of ‘conductance’ are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. except for site(s) located at the step discontinuity in four cases (e), (f), (i), and (j), as shown in Fig. 1, on the interface of two types of boundary, pointed out individually as well; at \({{\mathtt {x}}}=0, {{\mathtt {y}}}=1\) in (e) and (f), in place of (1.2b), \(\mathrm {b}^2\ddot{\mathtt {u}}_{{{\mathtt {x}}}, {{\mathtt {y}}}}={\mathtt {u}}_{{{\mathtt {x}}}+1, {{\mathtt {y}}}}+{\mathtt {u}}_{{{\mathtt {x}}}, {{\mathtt {y}}}+ 1}-2{\mathtt {u}}_{{{\mathtt {x}}}, {{\mathtt {y}}}}\) while in (i) and (j), \(\mathrm {b}^2\ddot{\mathtt {u}}_{{{\mathtt {x}}}, {{\mathtt {y}}}}={\mathtt {u}}_{{{\mathtt {x}}}+1, {{\mathtt {y}}}}+{\mathtt {u}}_{{{\mathtt {x}}}, {{\mathtt {y}}}+ 1}-3{\mathtt {u}}_{{{\mathtt {x}}}, {{\mathtt {y}}}}\).

  2. Evidently, in Table 1 can be also written as \({{F}}({{z}}; {{z}}_{{F}}({\frac{1}{2}}\pi ))\); also can be written as \({{F}}({{z}}; {{z}}_{{F}}(\frac{1}{3}\pi ))\).

References

  1. Papadopoulos, V.M.: The scattering effect of a junction between two circular waveguides. Q. J. Mech. Appl. Math. 10(2), 191–209 (1957). https://doi.org/10.1093/qjmam/10.2.191

    Article  MathSciNet  Google Scholar 

  2. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003). https://doi.org/10.1063/1.1524305

    Article  Google Scholar 

  3. Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Li, S.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1(1), 100305 (2014). https://doi.org/10.1063/1.4832615

    Article  Google Scholar 

  4. Fellay, A., Gagel, F., Maschke, K., Virlouvet, A., Khater, A.: Scattering of vibrational waves in perturbed quasi-one-dimensional multichannel waveguides. Phys. Rev. B 55, 1707–1717 (1997). https://doi.org/10.1103/PhysRevB.55.1707

    Article  Google Scholar 

  5. Ladik, J.: Ab-initio self-consistent field theory for the treatment of interface between two different quasi-one-dimensional chains. Prog. Surf. Sci. 26(1), 135–143 (1987). https://doi.org/10.1016/0079-6816(87)90054-2

    Article  Google Scholar 

  6. Kosevich, Y.A., Feher, A., Syrkin, E.S.: Resonance absorption, reflection, transmission of phonons and heat transfer through interface between two solids. Low Temp. Phys. 34(7), 575–582 (2008). https://doi.org/10.1063/1.2957011

    Article  Google Scholar 

  7. Kosevich, Y.A.: Multichannel propagation and scattering of phonons and photons in low-dimension nanostructures. Phys. Uspekhi 51(8), 848 (2008)

    Article  Google Scholar 

  8. Santamore, D.H., Cross, M.C.: Effect of phonon scattering by surface roughness on the universal thermal conductance. Phys. Rev. Lett. 87(11), 115502 (2001)

    Article  Google Scholar 

  9. Sánchez-Gil, J.A., Freilikher, V., Yurkevich, I., Maradudin, A.A.: Coexistence of ballistic transport, diffusion, and localization in surface disordered waveguides. Phys. Rev. Lett. 80(5), 948 (1998)

    Article  Google Scholar 

  10. Sánchez-Gil, J.A., Freilikher, V., Maradudin, A.A., Yurkevich, I.V.: Reflection and transmission of waves in surface-disordered waveguides. Phys. Rev. B 59(8), 5915 (1999)

    Article  Google Scholar 

  11. Mujica, V., Kemp, M., Ratner, M.A.: Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys. 101(8), 6849–6855 (1994). https://doi.org/10.1063/1.468314

    Article  Google Scholar 

  12. Virlouvet, A., Khater, A., Aouchiche, H., Rafil, O., Maschke, K.: Scattering of vibrational waves in perturbed two-dimensional multichannel asymmetric waveguides as on an isolated step. Phys. Rev. B 59, 4933–4942 (1999). https://doi.org/10.1103/PhysRevB.59.4933

    Article  Google Scholar 

  13. Wiener, N., Hopf, E.: Über eine klasse singulärer integralgleichungen. Sitzungsber. Preuss. Akad. Wiss. Berlin Phys. Math. 32, 696–706 (1931)

    MATH  Google Scholar 

  14. Noble, B.: Methods Based on the Wiener–Hopf Technique. Pergamon Press, London (1958)

    MATH  Google Scholar 

  15. Mittra, R., Lee, S.W.: Analytical Techniques in the Theory of Guided Waves, Macmillan Series in Electrical Science. Macmillan, New York (1971)

    Google Scholar 

  16. Kosevich, Arnold M.: The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices. Wiley, Weinheim (2005). 2nd rev. and updated ed

    Book  Google Scholar 

  17. Ohring, M.: Mechanical properties of thin films. In: Ohring, M. (ed.) Materials Science of Thin Films, 2nd edn, pp. 711–781. Academic Press, San Diego (2002). https://doi.org/10.1016/B978-012524975-1/50015-X

    Chapter  Google Scholar 

  18. Gong, H., Rao, M., Laughlin, D.E., Lambeth, D.N.: Highly oriented perpendicular Co-alloy media on Si(111) substrates. J. Appl. Phys. 85, 4699–4701 (1999). https://doi.org/10.1063/1.370452

    Article  Google Scholar 

  19. Ohtake, M., Yabuhara, O., Nukaga, Y., Futamoto, M.: Preparation of Co(0001)\(_{hcp}\) and (111)\(_{fcc}\) films on single-crystal oxide substrates. J. Phys. Conf. Ser. 303(1), 012016 (2011). https://doi.org/10.1088/1742-6596/303/1/012016

    Article  Google Scholar 

  20. Sharma, B.L.: Diffraction of waves on square lattice by semi-infinite crack. SIAM J. Appl. Math. 75(3), 1171–1192 (2015). https://doi.org/10.1137/140985093

    Article  MathSciNet  MATH  Google Scholar 

  21. Sharma, B.L.: Diffraction of waves on square lattice by semi-infinite rigid constraint. Wave Motion 59, 52–68 (2015). https://doi.org/10.1016/j.wavemoti.2015.07.008

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharma, B.L., Maurya, G.: Discrete scattering by a pair of parallel defects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 1–20 (2019). https://doi.org/10.1098/rsta.2019.0102

    Article  Google Scholar 

  23. Sharma, B.L., Eremeyev, V.A.: Wave transmission across surface interfaces in lattice structures. Int. J. Eng. Sc. 145, 103173 (2019). https://doi.org/10.1016/j.ijengsci.2019.103173

    Article  MathSciNet  MATH  Google Scholar 

  24. Eremeyev, V.A., Sharma, B.L.: Anti-plane surface waves in media with surface structure: discrete vs. continuum model. Int. J. Eng. Sci. 143, 33–38 (2019). https://doi.org/10.1016/j.ijengsci.2019.06.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. An. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  26. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  Google Scholar 

  27. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)

    Article  MathSciNet  Google Scholar 

  28. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)

    Article  MathSciNet  Google Scholar 

  29. Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998). https://doi.org/10.1103/PhysRevLett.81.232

    Article  Google Scholar 

  30. Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L.: Measurement of the quantum of thermal conductance. Nature 404(6781), 974–977 (2000)

    Article  Google Scholar 

  31. Marcuvitz, N.: Waveguide Handbook. IEE Electromagnetic Waves Series, Institution of Electrical Engineers. P. Peregrinus, ISBN 9780863410581, (1951)

  32. Collin, R.E.: Field Theory of Guided Waves. IEEE/OUP Series on Electromagnetic Wave Theory. IEEE Press (1991)

  33. Linton, C.M., McIver, P.: Handbook of Mathematical Techniques for Wave/Structure Interactions. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  34. Burns, W.K., Milton, A.: Mode conversion in planar-dielectric separating waveguides. Quantum Electron. IEEE J. 11(1), 32–39 (1975). https://doi.org/10.1109/JQE.1975.1068511

    Article  Google Scholar 

  35. Kokubo, Y.: Waveguide Mode Converters. INTECH Open Access Publisher, London (2011)

    Book  Google Scholar 

  36. Sharma, B.L.: Wave propagation in bifurcated waveguides of square lattice strips. SIAM J. Appl. Math. 76(4), 1355–1381 (2016). https://doi.org/10.1137/15M1051464

    Article  MathSciNet  MATH  Google Scholar 

  37. Mason, J.C., Handscomb, D.C.: Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  38. Sharma, B.L.: On linear waveguides of square and triangular lattice strips: an application of chebyshev polynomials. SIAM J. Appl. Math. 42(6), 901–927 (2017). https://doi.org/10.1007/s12046-017-0646-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Jury, E.I.: Theory and Application of the z-transform Method. John Wiley, New York (1964)

    Google Scholar 

  40. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, New York (2002)

    Book  Google Scholar 

  41. Chebyshev, P.L.: Théorie des mécanismes connus sous le nom de parallélogrammes. Mém. Acad. Sci. Pétersb. 7, 539–568 (1854). The theory of mechanisms that are known under the name of parallelograms

    Google Scholar 

  42. Sharma, B.L.: On prototypical wave transmission across a junction of waveguides with honeycomb structure. Zeitschrift für angewandte Mathematik und Physik 69(1), 16 (2018). https://doi.org/10.1007/s00033-018-0909-x

    Article  MathSciNet  MATH  Google Scholar 

  43. Brillouin, L.: Wave Propagation in Periodic Structures; Electric Filters and Crystal Lattices. Dover Publications, New York (1953)

    MATH  Google Scholar 

  44. Sharma, B. L.: Kinematically restricted phonon transmission in partly-unzipped tubes of square and triangular lattices (2018). arXiv:1808.01873

  45. Sharma, B.L.: Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon. Eur. Phys. J. B 91(5), 84 (2018). https://doi.org/10.1140/epjb/e2018-80647-2

    Article  Google Scholar 

  46. Sharma, B.L.: On electronic conductance of partially unzipped armchair nanotubes: further analysis. Eur. Phys. J. B 92(1), 1 (2019). https://doi.org/10.1140/epjb/e2018-90391-2

    Article  MathSciNet  Google Scholar 

  47. Maurya, G., Sharma, B.L.: Wave scattering on lattice structures involving array of cracks. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rspa.2019.0866

    Article  Google Scholar 

  48. Sharma, B.L.: On scattering of waves on square lattice half-plane with mixed boundary condition. Zeitschrift für angewandte Mathematik und Physik 68(5), 120 (2017). https://doi.org/10.1007/s00033-017-0854-0

    Article  MathSciNet  MATH  Google Scholar 

  49. ScienceDaily. Unzipping graphene nanotubes into nanoribbons: elegant mathematical solution explains how flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons. (2018). https://www.sciencedaily.com/releases/2018/06/180605103416.htm

  50. Callaway, J.: Energy Band Theory Pure and Applied Physics. Academic Press, New York (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

The partial support of SERB MATRICS grant MTR/2017/000013 is gratefully acknowledged. This work has been available free of peer review on the arXiv since 12/2019. The author thanks both anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant Lal Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1829 KB)

Appendices

A Auxiliary expressions

1.1 A.1

It is easily conceivable that there are four combinatorial variants of the square lattice waveguides (also the same are studied in detail by [38]) which are denoted by self-explanatory notation where the superscript on \({{\mathfrak {S}}}\) represents the upper boundary and the subscript represents the lower boundary. Indeed, in terms of the Chebyshev polynomials, using the definition (2.7), the dispersion relations for square lattice waveguides of width \({\mathtt {N}}\) [36, 38] are:

(A.1a)
(A.1b)
(A.1c)

Also (A.1c), using the Chebyshev polynomials \({\mathtt {V}}_n\) of the third kind, can be expressed as \({\mathtt {V}}_{{\mathtt {N}}}({\vartheta })=0\). Moreover, the expressions of the numerator and denominator of the kernel can be further expanded as stated in Table 1; in particular, (2.10) transforms to (2.13) to (2.17) to (2.18) to (2.27) to (2.30) to (2.35) to (2.36) to (2.45) to and (2.48) to .

1.2 A.2

By application of the discrete Fourier transform (1.5), the discrete Helmholtz equation (1.4), for all \({\mathtt {y}}\in {\mathbb {Z}}\) with \({\mathtt {y}}\) away from the boundary of the given lattice waveguide, is expressed as

(A.2a)
(A.2b)
(A.2c)
(A.2d)

The complex functions , , and \({\lambda }\) are defined on \({\mathbb {C}}\setminus {{\mathcal {B}}}\) where \({{\mathcal {B}}}\) denotes the union of branch cuts for \({{\lambda }}\), borne out of the chosen branch for and such that \(|{{\lambda }}({{z}})|\le 1, {{z}}\in {\mathbb {C}}\setminus {{\mathcal {B}}},\) as \({\upomega }_2\) in (A.2c) is positive. Note that . The general solution of (A.2a) is given by the expression

$$\begin{aligned} \begin{aligned} {\mathtt {u}}_{{\mathtt {y}}}^F={ c }_1 {\lambda }^{{\mathtt {y}}}+{ c }_2 {\lambda }^{-{\mathtt {y}}}, \end{aligned} \end{aligned}$$
(A.3)

where \({ c }_{1, 2}\) are arbitrary analytic functions of z in \({{{\mathcal {A}}}}\) (to be specified in the Wiener–Hopf formulation for each case).

B Reflectance and transmittance using the numerical solution

The reflectance \({{{\mathscr {R}}}}\) (resp. transmittance \({{\mathscr {T}}}\)) is the ratio of the energy flux in the outgoing wave ahead (resp. behind) of the cracks to the energy flux carried by the incident wave [43]. The energy flux is calculated across two vertical segments \({\mathscr {S}}_{{A},{B}}\) between \(\mathtt {x}=\pm X\) and \(\mathtt {x}=\pm X\pm 1\) (X is taken much larger than \({\mathtt {N}}\) so that \({\mathscr {S}}_{A,B}\) are far away from the location of step). The segment \({\mathscr {S}}_{A}\) intersects \({\mathtt {N}}\) horizontal bonds as it is located on the portion ahead of the step, while the segment \({\mathscr {S}}_{B}\) intersects \({\mathtt {N}}-{\mathtt {N}}_{step}\) horizontal bonds as it is located on the portion behind the step. Assume that the wave mode is incident from the portion ahead of the step (i.e., \({s}={A}\)). Then, following [43], the energy flux carried by the incident wave across \({\mathscr {S}}_{A}\) is

$$\begin{aligned} \begin{aligned} \mathtt {W}^i({{z}}_{{\text {in}}})&=\mathfrak {R}\sum \limits _{n=1}^{{{\mathtt {N}}}} ((\mathtt {u}_{X+1,n}^i-\mathtt {u}_{X,n}^i )\overline{(-i \omega \mathtt {u}_{X,n}^i)}), \end{aligned} \end{aligned}$$
(B.1)

and the energy flux in the outgoing wave reflected back across \({\mathscr {S}}_{A}\) can be written as

$$\begin{aligned} \begin{aligned} \mathtt {W}^r({{z}}_{{\text {in}}})&=\mathfrak {R}\sum \limits _{n=1}^{{{\mathtt {N}}}} ((\mathtt {u}_{X,n}-\mathtt {u}_{X+1,n})\overline{(-i\omega \mathtt {u}_{X+1,n})}). \end{aligned} \end{aligned}$$
(B.2)

Similarly, the energy flux in the outgoing wave behind the step, that is, the energy flux carried by the transmitted waves across \({\mathscr {S}}_{B}\) is determined as

$$\begin{aligned} \begin{aligned} \mathtt {W}^t({{z}}_{{\text {in}}})&=\mathfrak {R}\sum \limits _{n={{{\mathtt {N}}}_{step}} +1}^{\mathtt {N}}((\mathtt {u}_{-X,n}^t-\mathtt {u}_{-X-1,n}^t)\overline{(-i\omega \mathtt {u}_{-X-1,n}^t)}. \end{aligned} \end{aligned}$$
(B.3)

Using (B.1), (B.2), and (B.3), the reflectance and transmittance can be written as

$$\begin{aligned} {{{\mathscr {R}}}}({{z}}_{{\text {in}}})=\frac{\mathtt {W}^r({{z}}_{{\text {in}}})}{\mathtt {W}^i({{z}}_{{\text {in}}})}, {{\mathscr {T}}}({{z}}_{{\text {in}}})=\frac{\mathtt {W}^t({{z}}_{{\text {in}}})}{\mathtt {W}^i({{z}}_{{\text {in}}})}, \end{aligned}$$
(B.4)

respectively. Analogous expressions holds for the incident from the portion behind the step (i.e., \({s}={B}\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.L. Transmission of waves across atomic step discontinuities in discrete nanoribbon structures. Z. Angew. Math. Phys. 71, 73 (2020). https://doi.org/10.1007/s00033-020-01294-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01294-9

Keywords

Mathematics Subject Classification

Navigation